卷积神经网络
-
1-6 三维卷积
假如说你不仅想检测灰度图像的特征,也想检测 RGB 彩色图像的特征。彩色图像如果是 6×6×3,这里的 3指的是三个颜色通道,你可以把它想象成三个 6×6图像的堆叠。为了检测图像的边缘或者其他的特征,不是把它跟原来的 3×3 的过滤器做卷积,而是跟一个三维的过滤器,它的维度是 3×3×3,这样这个过滤器也有三层,对应红绿、蓝三个通道。 给这些起个名字(原图像…
-
3-4 卷积的滑动窗口实现
假设对象检测算法输入一个 14×14×3 的图像,图像很小。在这里过滤器大小为 5×5,数量是 16, 14×14×3 的图像在过滤器处理之后映射为 10×10×16。然后通过参数为 2×2 的最大池化操作,图像减小到 5×5×16。然后添加一个连接 400 个单元的全连接层,接着再添加一个全连接层,最后通过 softmax 单元输出。这里用 4 个数字来表…
-
1-8 简单卷积网络示例
简单卷积网络示例 (A simple convolution network example) 假设你有一张图片,你想做图片分类或图片识别,把这张图片输入定义为,然后辨别图片中有没有猫,用 0 或 1 表示,这是一个分类问题,我们来构建适用于这项任务的卷积神经网络。针对这个示例,我用了一张比较小的图片,大小是 39×39×3,这样设定可以使其中一些数字效果更…
-
1-10 卷积神经网络示例
卷积神经网络示例 (Convolutional neural network example) 假设,有一张大小为 32×32×3 的输入图片,这是一张 RGB 模式的图片,你想做手写体数字识别。 32×32×3 的 RGB 图片中含有某个数字,比如 7,你想识别它是从 0-9 这 10 个字中的哪一个,我们构建一个神经网络来实现这个功能。 输入是 32×3…
-
Pytorch实现卷积神经网络CNN
Pytorch是torch的Python版本,对TensorFlow造成很大的冲击,TensorFlow无疑是最流行的,但是Pytorch号称在诸多性能上要优于TensorFlow,比如在RNN的训练上,所以Pytorch也吸引了很多人的关注。之前有一篇关于TensorFlow实现的CNN可以用来做对比。 下面我们就开始用Pytorch实现CNN。 step…
-
1×1卷积核作用
1. 实现跨通道的交互和信息整合 对于某个卷积层,无论输入图像有多少个通道,输出图像通道数总是等于卷积核数量! 对多通道图像做1×1卷积,其实就是将输入图像于每个通道乘以卷积系数后加在一起,即相当于把原图像中本来各个独立的通道“联通”在了一起。 2. 进行卷积核通道数的降维和升维 进行降维和升维引起人们重视的(可能)是在GoogleNet里。对于每一个inc…
-
nn.ConvTranspose2d 逆卷积 反卷积
本文转摘于如下链接:逆卷积的详细解释ConvTranspose2d(fractionally-strided convolutions) https://www.cnblogs.com/wanghui-garcia/p/10791328.htmlpytorch官方手册:https://pytorch.org/docs/stable/nn.html?highl…
-
可变形卷积 deformable convolution 学习记录
Deformable ConvNets v1:论文地址:https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch工程地址:https://github.com/felixlaumon/deform-conv 论文地址: Deformable ConvNets v2: More Deform…
-
吃透空洞卷积(Dilated Convolutions)
来自 | 知乎 作者丨玖零猴 链接丨https://zhuanlan.zhihu.com/p/113285797 编辑丨极市平台 空洞卷积在图像分割需要增加感受野同时保持特征图的尺寸的需求中诞生,本文详细介绍了空洞卷积的诞生、原理、计算过程以及存在的两个潜在的问题,帮助大家将空洞卷积这一算法“消化吸收”。 一、空洞卷积的提出 空洞卷积中文名也叫膨胀…
-
卷积神经网络 1*1 卷积核
卷积神经网络中卷积核的作用是提取图像更高维的特征,一个卷积核代表一种特征提取方式,对应产生一个特征图,卷积核的尺寸对应感受野的大小。 经典的卷积示意图如下: 5*5的图像使用3*3的卷积核进行卷积,结果产生3*3(5-3+1)的特征图像。 卷积核的大小一般是(2n+1)*(2n+1)的奇数乘奇数大小(n>=1),最常用的有3*3,5*5,7*7的。之所…