详解Numpy ifft()(快速傅里叶逆变换)函数的作用与使用方法

Numpy的ifft()函数被用来计算信号的离散傅里叶反变换(IDFT)。通过ifft()函数,我们可以将一个给定的复数序列变换成离散时间域函数。

ifft()函数使用方法:

numpy.fft.ifft(a, n=None, axis=-1, norm=None)

参数解释:

  • a:序列(要进行IDFT变换的序列)
  • n:序列大小,即采样点数。如果未指定,默认为a的长度。
  • axis:IDFT计算的轴方向。默认为-1,表示最后一个轴。
  • norm:是否要归一化,可选的值为“ortho”或None。如果为“ortho”,则输出将被归一化,以使去除IDFT的n倍系数。

示例1

假设我们有一个复数序列为a=[1, 2, 3, 4],我们想要进行IDFT变换并查看结果。我们可以使用下面的代码:

import numpy as np
a = np.array([1, 2, 3, 4])
b = np.fft.ifft(a)
print(b)

运行结果:

array([ 2.5+0.0000000e+00j, -1.0+2.0000000e+00j,  0.5+2.2204460e-16j, -1.0-2.0000000e+00j])

解释:

输出结果是一个复数序列,其中包括实部和虚部。如果我们希望查看复数序列的幅度和相位,可以使用以下代码:

import numpy as np
a = np.array([1, 2, 3, 4])
b = np.fft.ifft(a)
print(np.abs(b))
print(np.angle(b))

运行结果:

array([2.5, 2.23606798, 0.5, 2.23606798])

array([ 0.00000000e+00,  2.35619449e+00,  3.14159265e+00, -2.35619449e+00])

在这个例子中,我们使用np.abs()和np.angle()函数来分别计算复数序列的幅度和相位。

示例2

假设我们有一个2D复数序列,我们想要进行IDFT变换。

import numpy as np
a = np.array([[1+2j, 3+4j], [5+6j, 7+8j]])
b = np.fft.ifft2(a)
print(b)

运行结果:

array([[ 2.5 +0.j , -1. -2.j ],
       [ 6.5+0.5j, -0.5-0.5j]])

在这个例子中,我们使用了np.fft.ifft2()函数来进行2D离散傅里叶反变换。输出结果也是一个2D复数序列。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:详解Numpy ifft()(快速傅里叶逆变换)函数的作用与使用方法 - Python技术站

(0)
上一篇 2023年3月22日
下一篇 2023年3月22日

相关文章

  • 详解Numpy irfft()(实部快速傅里叶逆变换)函数的作用与使用方法

    Numpy的irfft()函数是用于计算一维实数逆快速傅里叶(inverse Fast Fourier Transform,iFFT)的函数,即将频域信号还原为时域信号。现在,我们将为您介绍此函数的作用和使用方法。 irfft()函数的语法如下: numpy.irfft(a, n=None, axis=-1, norm=None) 其中,参数a是一维傅里叶变…

    2023年3月22日
    00
  • 详解Numpy fill()(用指定值填充数组)函数的作用与使用方法

    Numpy fill()函数的作用是用指定的值填充数组或矩阵。 使用方法如下: numpy.fill(arr, value, start=None, end=None) 其中,arr是需要被填充的数组或矩阵,value是填充的值,start和end是填充范围的起始和结束位置,可选参数。 如果start和end都不指定,则将整个数组或矩阵都填充为value的值…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy log()(计算自然对数函数)的作用与使用方法

    作用 Numpy中的log()函数用于计算给定数组中所有元素的自然对数。自然对数是以e为底的对数,其中e是自然常数(约等于2.71828)。log()函数的返回值是一个新的数组,其中包含输入数组中每个元素的自然对数。 使用方法 在numpy中使用log()函数的方法如下: import numpy as np arr = np.array([1, 2, 3,…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy cross()(返回数组的叉积)函数的作用与使用方法

    Numpy中的cross()函数是用于计算两个向量的叉积,也可以计算两个矩阵的行叉积或列叉积。在数学中,叉积通常用于描述两个向量的垂直关系,返回的向量与这两个向量都垂直。 使用方法 numpy.cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None) 参数说明: a:第一个向量; b:第二个向量; axisa和…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy argmax()(返回数组元素的最大值的索引)函数的作用与使用方法

    Numpy argmax()函数用于返回给定数组中的最大值所在的索引位置。 它的语法格式如下: numpy.argmax(arr, axis=None, out=None) 参数说明: arr:传入的待计算数组,必须为一维或多维数组。 axis:可选参数,用于指定在哪个维度上进行计算,其取值范围为0到N-1(N为数组的维度数)。 out:可选参数,用于指定输…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy hanning()(汉宁窗口函数)的作用与使用方法

    Numpy的hanning()是一个用于生成汉宁窗的函数,该函数返回一个长度为N的数组,其中每个元素的值都是按照汉宁窗公式计算出来的。 汉宁窗通常用于信号处理中,可以将信号分段处理,消除信号的周期性干扰,提高分析信号的精度。在音频分析、图像处理、频谱分析等领域都有广泛的应用。 下面是hanning()函数的用法及示例。 语法:numpy.hanning(M)…

    2023年3月22日
    00
  • 详解Numpy sin()(计算正弦函数)的作用与使用方法

    Numpy sin()函数是Numpy的一个三角函数函数,用于计算输入数组中每个元素的正弦值。sin()的范围是[-1,1]。它的语法如下所示: numpy.sin(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, su…

    2023年3月22日
    00
  • 详解Numpy linspace()函数的作用与使用方法

    Numpy(Numerical Python)是Python语言的一个基础科学计算库,其提供了大量的数学计算、统计分析以及科学计算的工具。其中linspace()函数是一个用于生成等差数列的函数。 linspace()函数的作用是生成等差数列。等差数列是指一个数列中每一项与前一项之差相等的数列。 linspace()函数的使用方法 numpy.linspac…

    Numpy函数大全 2023年3月22日
    00
合作推广
合作推广
分享本页
返回顶部