这些是最热门的机器学习技术!

在上文中我们已经了解了机器学习的原理,就是模仿人类大脑进行学习的过程,通过让机器模仿这种学习过程实现所谓的“智能”。

经过近几十年的发展,机器学习的方法也越来越成熟,主要有以下几种:

  • 监督学习
  • 无监督学习
  • 强化学习
  • 深度学习
  • 深度强化学习

机器学习方法

如上图所示,机器学习是从左往右的发展方向,每一阶段的学习方法都比上一代优秀了很多。
下面简单介绍这几种机器学习方法的工作原理。

监督学习

监督学习指的是让机器从现有的标注好的已知数据中学习预测模型的学习方法。

简单来说,先给定计算机一组标记好的数据,让计算机用回归或分类的方法计算出数据与标记之间的经验关系。

通过这种方式,计算机最终会得出一个预测模型,训练数据越多,预测模型越准确。

而所谓的“回归”和“分类”方法,是计算机的两种寻找规律的方式。具体如下:

回归方法
计算机通过给定的标记与数据之间的特征值,计算出标记与数据之间的经验关系。

这种方法最终得到的预测模型其实就是“经验关系”。当训练完成,你可以使用模型对未知数据进行预测,以此来测试计算机是否已经学习到了。

分类方法
分类方法指的是让计算机将性质相似的数据分类为一个组。这种方法得到的模型是一个分类器。
训练完成后,你可以使用未知数据让分类器进行分类,根据分类结果判断计算机的预测精度水平。
监督学习的方法包括:KNN、SVN等。

无监督学习

无监督学习是相对于监督学习来讲的,是对监督学习的升级版。

无监督学习指的是从无标注的数据集中学习预测模型的方法。

监督学习需要给计算机标记好的训练集,而无监督学习不需要人工标记训练集,计算机会根据现有的数据集的特征,自动对数据集进行分类。

无监督学习的方法有:聚类、K均值、PCA等

强化学习

强化学习与监督学习、无监督学习最大的区别,就是它不是一个分类任务。

强化学习训练时,需要环境给予反馈,以及对应具体的反馈值。通过反馈值告诉预测模型预测结果是“好”还是“坏”,然后通过外界的反馈结果调整预测模型。

深度学习

深度学习是无监督学习的一种,它模仿的是人类大脑神经网络。

常用的深度学习方法有深度神经网络、深度信念网络、递归神经网络和卷积神经网络等。

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度强化学习

深度学习具有较强的感知能力,但是缺乏一定的决策能力;而强化学习具有决策能力,对感知问题束手无策。因此,深度强化学习将深度学习和强化学习相结合,优势互补,为复杂系统的感知决策问题提供了解决思路。

该技术在机器人、视频游戏、金融和医疗领域取得了巨大成功。许多以前无法解决的问题现在通过创建DRL模型得到了解决。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:这些是最热门的机器学习技术! - Python技术站

(0)
上一篇 2023年4月9日 下午11:51
下一篇 2022年11月12日 下午1:45

相关文章

  • 机器学习笔记(1): 模型和 cost function

    表达模型 变量表示: x(i) : 第 i 个输入变量,也称为输入特征 y(i) : 第 i 个输入变量,即我们希望预测的内容 (x(i), y(i)) ; i = 1,…,m : 表示一个训练集 X : 输入值空间; Y : 输出值空间   模型的表达: 对于监督学习来说,就是给定一个训练集,输出一个函数 h:X –> Y,使函数 h(x) 能…

    机器学习 2023年4月13日
    00
  • [机器学习] k近邻算法

    算是机器学习中最简单的算法了,顾名思义是看k个近邻的类别,测试点的类别判断为k近邻里某一类点最多的,少数服从多数,要点摘录: 1. 关键参数:k值 && 距离计算方式 && 分类决策规则 2. k=1, 即只取最近点,容易过拟合,k取较大值,容易欠拟合。k值越小,模型越复杂。k = 3 or 5 works well. 3. …

    机器学习 2023年4月13日
    00
  • 机器学习算法思想梳理

    朴素贝叶斯:   有以下几个地方需要注意:   1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。   2. 计算公式如下:       其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是 的计算方法,而由朴素贝叶斯的前提假设可知,…

    机器学习 2023年4月12日
    00
  • python机器学习简介

    目录 一:学习机器学习原因和能够解决的问题 1.原因 2.机器学习能够解决的问题 二:为什么选择python作为机器学习的语言 三:机器学习常用库简介 1.scikit-learn 2.Jupyter notebook 3.NumPy 4.SciPy 5.matplotlib 6.pandas 7.mglearn 8.导入机器学习常用库 四:机器学习流程 1…

    机器学习 2023年4月10日
    00
  • 【机器学习】卷积层,池化层,全连接层,BN层作用;CNN 网络参数数量的计算

    官方文档:https://keras.io/layers/convolutional/#zeropadding2d https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html VGG16架构 https://www.cnblog…

    2023年4月9日
    00
  • 《机器学习》西瓜书习题 第 4 章

    4.1   试证明对于不含冲突数据 (即特征向量完全相同但标记不同) 的训练集, 必存在与训练集一致 (即训练误差为 0)的决策树.   既然每个标记不同的数据特征向量都不同, 只要树的每一条 (从根解点到一个叶节点算一条) 枝干代表一种向量, 这个决策树就与训练集一致. 4.2   试析使用 “最小训练误差” 作为决策树划分选择准则的缺陷.   \(4.1…

    机器学习 2023年4月11日
    00
  • 吴恩达机器学习笔记50-主成分分析算法(PCA Algorithm)

    PCA 减少????维到????维步骤:     第一步是均值归一化。我们需要计算出所有特征的均值,然后令 ???????? = ???????? − ????????。如果特征是在不同的数量级上,我们还需要将其除以标准差 ????2。   第二步是计算协方差矩阵(covariance matrix) (求和上面的n错了,应该是m)   第三步是计算协方差矩…

    2023年4月10日
    00
  • 机器学习面试问题6

    以下内容接机器学习面试问题5. 神经网络参数相关 参数的范围 目前还没有明确的参数范围,只有个人总结性的原则。如下: 网络参数确定原则: ①、网络节点 网络输入层神经元节点数就是系统的特征因子(自变量)个数,输出层神经元节点数就是系统目标个数。隐层节点选按经验选取,一般设为输入层节点数的75%。如果输入层有7个节点,输出层1个节点,那么隐含层可暂设为5个节点…

    机器学习 2023年4月16日
    00
合作推广
合作推广
分享本页
返回顶部