深度学习
-
吴恩达《深度学习》第二门课(3)超参数调试、Batch正则化和程序框架
3.1调试处理 (1)不同超参数调试的优先级是不一样的,如下图中的一些超参数,首先最重要的应该是学习率α(红色圈出),然后是Momentum算法的β、隐藏层单元数、mini-batch size(黄色圈出)、再之后是Layer、learning rate decay(紫色圈出)、最后是Adam算法中的β1、β2、ε。 (2)用随机取值代替网格点取值。下图左边…
-
吴恩达《深度学习》第三门课(2)机器学习策略二
2.1进行误差分析 (1)一识别猫为案例,错误率为10%,这时系统还可以有较大提升空间,这时该往哪方面努力呢?可以通过误差分析,具体可以拿出100个分类错误的样本,然后利用表格统计每个样本分类错误的原因(如下图所示),比如很模糊,狗和猫很像,有滤镜等,一个样本出错可以同时有多个原因,统计看因为什么原因导致分类错误的比例最高,那么就应该着重花功夫在那上面。 (…
-
吴恩达《深度学习》第二门课(2)优化算法
2.1Mini-batch梯度下降 (1)例如有500万个训练样本,这时可以每1000个组成一个Mini-batch,共用5000个Mini-batch。主要是为了加快训练。 (2)循环完所有的训练样本称为(1 epoch)。 (3)使用大括号X{t},Y{t}表示一个Mini-batch。(小括号(i)表示第i个样本,中括号[l]表示神经网络第l层)。 …
-
【目标识别】深度学习进行目标识别的资源列表
【目标识别】深度学习进行目标识别的资源列表:O网页链接 包括RNN、MultiBox、SPP-Net、DeepID-Net、Fast R-CNN、DeepBox、MR-CNN、Faster R-CNN、YOLO、DenseBox、SSD、Inside-Outside Net、G-CNN等。Papers Deep Neural Networks for Obj…
-
【深度学习】BP反向传播算法Python简单实现
转载:火烫火烫的 个人觉得BP反向传播是深度学习的一个基础,所以很有必要把反向传播算法好好学一下 得益于一步一步弄懂反向传播的例子这篇文章,给出一个例子来说明反向传播 不过是英文的,如果你感觉不好阅读的话,优秀的国人已经把它翻译出来了。 一步一步弄懂反向传播的例子(中文翻译) 然后我使用了那个博客的图片。这次的目的主要是对那个博客的一个补充。但是首先我觉得先…
-
神经网络与深度学习笔记(四):向量化以提高计算速度
我们在计算模型w的转置乘上x的时候,往往需要把w和x分别进行向量化然后运算,因为这样会使我们的计算机得到结果的时间更快,而且这种方法不管是在CPU还是在GPU上都是成立的,首先我们来看看代码: import numpy as np import time a=np.random.rand(1000000) b=np.random.rand(1000000) …
-
神经网络与深度学习笔记(二)逻辑回归
逻辑回归函数是由两个函数符合而成,首先我们有sigmoid函数g(z): 当然这里面的参数可以加上各种有关theta的定值,并不一定必须就只有x之前的theta参数。 然后再把g(z)拿到h(x)函数里面去拟合就可以了,h(x)则是我们的Logistic回归函数。 把这两个方程拟合放到一起有: sigmoid函数长这样: 由于我们是二分类的问题,因此y只有1…
-
吴恩达《深度学习》第五门课(1)循环序列模型(RNN)
1.1为什么选择序列模型 (1)序列模型广泛应用于语音识别,音乐生成,情感分析,DNA序列分析,机器翻译,视频行为识别,命名实体识别等众多领域。 (2)上面那些问题可以看成使用(x,y)作为训练集的监督学习,但是输入与输出的对应关系有非常多的组合,比如一对一,多对多,一对多,多对一,多对多(个数不同)等情况来针对不同的应用。 1.2数学符号 (1)x(i)&…
-
吴恩达《深度学习》第四门课(4)特殊应用:人脸识别和神经风格迁移
4.1什么是人脸识别 (1)人脸验证(face verification):1对1,输入一个照片或者名字或者ID,然后判断这个人是否是本人。 (2)人脸识别(face recognition):1对多,判断这个人是否是系统中的某一个人。 4.2One-shot学习 (1)比如一个公司的员工,一般每个人只给一张工作照(如4个人),这时网络输出五个单元,分别代表…
-
吴恩达《深度学习》第五门课(2)自然语言处理与词嵌入
2.1词汇表征 (1)使用one-hot方法表示词汇有两个主要的缺点,以10000个词为例,每个单词需要用10000维来表示,而且只有一个数是零,其他维度都是1,造成表示非常冗余,存储量大;第二每个单词表示的向量相乘都为零(正交),导致没能够表示是词汇之间的联系,比如oriange和apple,queen和king应该是联系比价紧密的,但是用上面的词典表示无…