python使用torch随机初始化参数

在深度学习中,随机初始化参数是非常重要的。本文提供一个完整的攻略,以帮助您了解如何在Python中使用PyTorch随机初始化参数。

方法1:使用torch.nn.init

在PyTorch中,您可以使用torch.nn.init模块来随机初始化参数。torch.nn.init模块提供了多种初始化方法,包括常见的Xavier初始化和Kaiming初始化。您可以按照以下步骤使用torch.nn.init:

import torch
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(784, 256)
        self.fc2 = nn.Linear(256, 10)
        nn.init.xavier_uniform_(self.fc1.weight)
        nn.init.zeros_(self.fc1.bias)
        nn.init.xavier_uniform_(self.fc2.weight)
        nn.init.zeros_(self.fc2.bias)

    def forward(self, x):
        x = x.view(-1, 784)
        x = nn.functional.relu(self.fc1(x))
        x = self.fc2(x)
        return x

net = Net()

在这个示例中,我们定义了一个Net类,该类包含两个全连接层。我们使用nn.init.xavier_uniform_()函数和nn.init.zeros_()函数来随机初始化参数。我们使用xavier_uniform_()函数来初始化权重,使用zeros_()函数来初始化偏差。我们使用Net()类创建一个神经网络。

方法2:使用torch.nn.Parameter

在PyTorch中,您可以使用torch.nn.Parameter来随机初始化参数。torch.nn.Parameter是一种特殊的张量,可以自动注册为模型参数。您可以按照以下步骤使用torch.nn.Parameter:

import torch
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1_weight = nn.Parameter(torch.randn(784, 256))
        self.fc1_bias = nn.Parameter(torch.zeros(256))
        self.fc2_weight = nn.Parameter(torch.randn(256, 10))
        self.fc2_bias = nn.Parameter(torch.zeros(10))

    def forward(self, x):
        x = x.view(-1, 784)
        x = nn.functional.relu(torch.mm(x, self.fc1_weight) + self.fc1_bias)
        x = torch.mm(x, self.fc2_weight) + self.fc2_bias
        return x

net = Net()

在这个示例中,我们定义了一个Net类,该类包含两个全连接层。我们使用torch.randn()函数和torch.zeros()函数来随机初始化参数。我们使用nn.Parameter()函数将张量注册为模型参数。我们使用Net()类创建一个神经网络。

总之,通过本文提供的攻略,您可以了解如何在Python中使用PyTorch随机初始化参数。您可以使用torch.nn.init模块或torch.nn.Parameter来随机初始化参数。您可以根据实际情况选择适合您的方法。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:python使用torch随机初始化参数 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • pytorch实现word embedding: torch.nn.Embedding

    pytorch中实现词嵌入的模块是torch.nn.Embedding(m,n),其中m是单词总数,n是单词的特征属性数目。 例一 import torch from torch import nn embedding = nn.Embedding(10, 3) #总共有10个单词,每个单词表示为3个维度特征。此行程序将创建一个可查询的表, #表中包含一个1…

    PyTorch 2023年4月7日
    00
  • PyTorch——(7) MNIST手写数字识别实例

    代码 import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms batch_size=200 learning_rate=0.01 epo…

    2023年4月8日
    00
  • 浅谈PyTorch的可重复性问题(如何使实验结果可复现)

    浅谈PyTorch的可重复性问题(如何使实验结果可复现) 在PyTorch中,由于随机数生成器的使用,实验结果可能会因为随机数的不同而无法复现。在本文中,我们将介绍如何使实验结果可复现,并提供两个示例说明。 示例1:使用固定随机数种子 以下是一个使用固定随机数种子的示例代码: import torch import random import numpy a…

    PyTorch 2023年5月16日
    00
  • [深度学习] Pytorch(三)—— 多/单GPU、CPU,训练保存、加载模型参数问题

    上一篇实践学习中,遇到了在多/单个GPU、GPU与CPU的不同环境下训练保存、加载使用使用模型的问题,如果保存、加载的上述三类环境不同,加载时会出错。就去研究了一下,做了实验,得出以下结论: 多/单GPU训练保存模型参数、CPU加载使用模型 #保存 PATH = ‘cifar_net.pth’ torch.save(net.module.state_dict…

    PyTorch 2023年4月8日
    00
  • pytorch基础(1)

    基本数据类型和tensor   1 import torch 2 import numpy as np 3 4 #array 和 tensor的转换 5 array = np.array([1.1,2,3]) 6 tensorArray = torch.from_numpy(array) #array对象变为tensor对象 7 array1 = tenso…

    PyTorch 2023年4月8日
    00
  • 小白学习之pytorch框架(1)-torch.nn.Module+squeeze(unsqueeze)

    我学习pytorch框架不是从框架开始,从代码中看不懂的pytorch代码开始的   可能由于是小白的原因,个人不喜欢一些一下子粘贴老多行代码的博主或者一些弄了一堆概念,导致我更迷惑还增加了畏惧的情绪(个人感觉哈),我觉得好像好多人都是喜欢给说的明明白白的,难听点就是嚼碎了喂我们。这样也行啊(有点恶心哈),但是有些东西即使嚼碎了我们也弄不明白,毕竟有一些知识…

    2023年4月6日
    00
  • pytorch实现多项式回归

    以下是PyTorch实现多项式回归的完整攻略,包括数据准备、模型定义、训练和预测等步骤。同时,还提供了两个示例说明。 1. 数据准备 多项式回归是一种回归分析方法,它可以用于拟合非线性数据。在PyTorch中,我们可以使用torch.utils.data.Dataset和torch.utils.data.DataLoader来加载数据集。 以下是一个生成多项…

    PyTorch 2023年5月16日
    00
  • Python实现softmax反向传播的示例代码

    Python实现softmax反向传播的示例代码 softmax函数是一种常用的激活函数,它可以将输入转换为概率分布。在神经网络中,softmax函数通常用于多分类问题。本文将提供一个完整的攻略,介绍如何使用Python实现softmax反向传播。我们将提供两个示例,分别是使用softmax反向传播进行多分类和使用softmax反向传播进行图像分类。 sof…

    PyTorch 2023年5月15日
    00
合作推广
合作推广
分享本页
返回顶部