PyTorch——(7) MNIST手写数字识别实例

代码

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms


batch_size=200
learning_rate=0.01
epochs=10

# 下载数据
train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=batch_size, shuffle=True)



w1, b1 = torch.randn(200, 784, requires_grad=True),\
         torch.zeros(200, requires_grad=True)
w2, b2 = torch.randn(200, 200, requires_grad=True),\
         torch.zeros(200, requires_grad=True)
w3, b3 = torch.randn(10, 200, requires_grad=True),\
         torch.zeros(10, requires_grad=True)

torch.nn.init.kaiming_normal_(w1)
torch.nn.init.kaiming_normal_(w2)
torch.nn.init.kaiming_normal_(w3)

#自己定义结构实现
def forward(x):
    x = x@w1.t() + b1
    x = F.relu(x)
    x = x@w2.t() + b2
    x = F.relu(x)
    x = x@w3.t() + b3
    x = F.relu(x)
    return x

# 使用Pytorch的API实现
class MLP(nn.Module):

    def __init__(self):
        super(MLP, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(784, 200),
            nn.ReLU(inplace=True),
            nn.Linear(200, 200),
            nn.ReLU(inplace=True),
            nn.Linear(200, 10),
            nn.ReLU(inplace=True),
        )

    def forward(self, x):
        x = self.model(x)

        return x

# GPU加速
device = torch.device('cuda:0')
net = MLP().to(device)
# 优化方法SGD 待优化变量 [w1, b1, w2, b2, w3, b3]
# optimizer = optim.SGD([w1, b1, w2, b2, w3, b3], lr=learning_rate)#自己定义结构实现
optimizer = optim.SGD(net.parameters(), lr=learning_rate)# 使用Pytorch的API实现
# loss_function 交叉熵
criteon = nn.CrossEntropyLoss().to(device)

for epoch in range(epochs):

    for batch_idx, (data, target) in enumerate(train_loader):
        # 重构为x*28*28的尺寸  28*28=784
        data = data.view(-1, 28*28)
        # GPU加速
        data, target = data.to(device), target.cuda()
        # 网络结构
        # logits = forward(data)#自己定义结构实现
        logits = net(data)# 使用Pytorch的API实现
        # 计算损失函数
        loss = criteon(logits, target)
        # 初始化梯度为0
        optimizer.zero_grad()
        # 计算反向传播梯度
        loss.backward()
        # print(w1.grad.norm(), w2.grad.norm())
        # 进行一次优化更新
        optimizer.step()

        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))


    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data = data.view(-1, 28 * 28)
        data, target = data.to(device), target.cuda()
        # logits = forward(data)
        logits = net(data)
        test_loss += criteon(logits, target).item()

        pred = logits.data.max(1)[1]
        correct += pred.eq(target.data).sum()

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))