import os import tab import tensorflow as tf from numpy.random import RandomState print "hello tensorflow 4.1" batch_size = 8 x = tf.placeholder(tf.float32,shape=(None,2),name=\'x-input\') y_ = tf.placeholder(tf.float32,shape=(None,1),name=\'y-input\') w1 = tf.Variable(tf.random_normal([2,1],stddev=1,seed=1)) #w2 = tf.Variable(tf.random_normal([3,1],stddev=1,seed=1)) y = tf.matmul(x,w1) #a = tf.matmul(x,w1) #y = tf.matmul(a,w2) loss_less = 10 loss_more = 1 loss = tf.reduce_sum(tf.where(tf.greater(y,y_),(y-y_)*loss_more,(y_-y)*loss_less)) train_step = tf.train.AdamOptimizer(0.001).minimize(loss) rdm = RandomState(1) dataset_size = 128 X = rdm.rand(dataset_size,2) Y = [[x1 + x2 +rdm.rand()/10.0-0.05] for (x1 ,x2 ) in X] with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) print sess.run(w1) STEPS = 5000 for i in range(STEPS): start = (i * batch_size) % dataset_size end = min(start+batch_size,dataset_size) sess.run(train_step, feed_dict = {x: X[start:end], y_: Y[start:end]} ) print sess.run(w1) print "end "
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Tensorflow%20实战Google深度学习框架 4.2.2 自定义损失函数源代码 - Python技术站