基于遗传算法的地图四色原理绘图上色的Python代码

  本文介绍利用Python语言,实现基于遗传算法GA)的地图四色原理着色操作。

1 任务需求

  首先,我们来明确一下本文所需实现的需求。

  现有一个由多个小图斑组成的矢量图层,如下图所示。

基于遗传算法的地图四色原理绘图上色的Python代码

  我们需要找到一种由4种颜色组成的配色方案,对该矢量图层各图斑进行着色,使得各相邻小图斑间的颜色不一致,如下图所示。

基于遗传算法的地图四色原理绘图上色的Python代码

  在这里,我们用到了四色定理(Four Color Theorem),又称四色地图定理(Four Color Map Theorem):如果在平面上存在一些邻接的有限区域,则至多仅用四种颜色来给这些不同的区域染色,就可以使得每两个邻接区域染的颜色都不一样。

2 代码实现

  明确了需求,我们就可以开始具体的代码编写。目前国内各大博客中,有很多关于Python实现地图四色原理着色的代码,其中大多数是基于回溯法来实现的;而在一个英文博客网页中,看到了基于遗传算法的地图四色原理着色实现。那么就以该代码为例,进行操作。在这里,由于我本人对于遗传算法的理解还并不深入,因此在代码介绍方面或多或少还存在着一定不足,希望大家多多批评指正。

2.1 基本思路

  遗传算法是一种用于解决最佳化问题的搜索算法,属于进化算法范畴。结合前述需求,首先可以将每一个区域的颜色作为一个基因,个体基因型则为全部地区(前述矢量图层共有78个小图斑,即78个区域)颜色基因的汇总;通过构建Rule类,将空间意义上的“相邻”转换为可以被遗传算法识别(即可以对个体基因改变加以约束)的信息;随后,结合子代的更替,找到满足要求的基因组;最终将得到的基因组再转换为空间意义上的颜色信息,并输出结果。

  具体分步骤思路如下:

  1. 定义“规则”。“规则”用以将区域之间的空间连接情况转换为遗传算法可以识别的信息;被“规则”连接的两个区域在空间中是相邻的。
  2. 定义区域空间连接情况检查所需函数。这些函数用于检查两两区域之间的连接性是否满足逻辑;例如,若在“规则”中显示区域A与区域B连接,那么区域B也必须在“规则”中显示与区域A连接。
  3. 定义个体基因型。其中,各个体具有78个基因,每一个基因表示一个区域的颜色。
  4. 个体更替与最优基因选择。通过个体的不断更迭,选择出满足“规则”要求的个体基因型。
  5. 基因型解释。将得到的个体基因型进行解释,相当于第一步的反过程,即将基因信息转换为空间连接情况。
  6. 结果检查。检查所得到的颜色与最优个体基因组中的各个基因是否一致。

2.2 代码讲解

  接下来,将完整代码进行介绍。其中,shapefile_path即为矢量图层的保存路径;"POLY_ID_OG"则为矢量图层的属性表中的一个字段,其代表每一个小图斑的编号。

# -*- coding: utf-8 -*-
"""
Created on Sun Oct 31 19:22:33 2021

@author: Chutj
"""

import genetic
import unittest
import datetime
from libpysal.weights import Queen

shapefile_path="G:/Python_Home1/stl_hom_utm.shp"

weights=Queen.from_shapefile(shapefile_path,"POLY_ID_OG")
one_neighbor_other=weights.neighbors

# 定义“规则”,用以将区域之间的空间连接情况转换为遗传算法可以识别的信息。被“规则”连接的两个区域在空间中是相邻的

class Rule:
    Item = None
    Other = None
    Stringified = None
 
    def __init__(self, item, other, stringified):
        self.Item = item
        self.Other = other
        self.Stringified = stringified
 
    def __eq__(self, another):
        return hasattr(another, 'Item') and \
               hasattr(another, 'Other') and \
               self.Item == another.Item and \
               self.Other == another.Other
 
    def __hash__(self):
        return hash(self.Item) * 397 ^ hash(self.Other)
 
    def __str__(self):
        return self.Stringified

# 定义区域空间连接情况检查所需函数,用以确保区域两两之间相邻情况的准确

def buildLookup(items):
    itemToIndex = {}
    index = 0
    for key in sorted(items):
        itemToIndex[key] = index
        index += 1
    return itemToIndex
 
def buildRules(items):
    itemToIndex = buildLookup(items.keys())
    rulesAdded = {}
    rules = []
    keys = sorted(list(items.keys()))
 
    for key in sorted(items.keys()):
        keyIndex = itemToIndex[key]
        adjacentKeys = items[key]
        for adjacentKey in adjacentKeys:
            if adjacentKey == '':
                continue
            adjacentIndex = itemToIndex[adjacentKey]
            temp = keyIndex
            if adjacentIndex < temp:
                temp, adjacentIndex = adjacentIndex, temp
            ruleKey = str(keys[temp]) + "->" + str(keys[adjacentIndex])
            rule = Rule(temp, adjacentIndex, ruleKey)
            if rule in rulesAdded:
                rulesAdded[rule] += 1
            else:
                rulesAdded[rule] = 1
                rules.append(rule)
 
    for k, v in rulesAdded.items():
        if v == 1:
            print("rule %s is not bidirectional" % k)
 
    return rules

# 定义颜色所代表的基因组

colors = ["Orange", "Yellow", "Green", "Blue"]
colorLookup = {}
for color in colors:
    colorLookup[color[0]] = color
geneset = list(colorLookup.keys())

# 定义个体基因型,其中各个体有78个基因,每一个基因代表一个区域。个体基因需要满足“规则”中相邻的区域具有不同的颜色

class GraphColoringTests(unittest.TestCase):
    def test(self):
        rules = buildRules(one_neighbor_other)
        colors = ["Orange", "Yellow", "Green", "Blue"]
        colorLookup = {}
        for color in colors:
            colorLookup[color[0]] = color
        geneset = list(colorLookup.keys())
        optimalValue = len(rules)
        startTime = datetime.datetime.now()
        fnDisplay = lambda candidate: display(candidate, startTime)
        fnGetFitness = lambda candidate: getFitness(candidate, rules)
        best = genetic.getBest(fnGetFitness, fnDisplay, len(one_neighbor_other), optimalValue, geneset)
        self.assertEqual(best.Fitness, optimalValue)
 
        keys = sorted(one_neighbor_other.keys())
 
        for index in range(len(one_neighbor_other)):
            print(keys[index]," is ",colorLookup[best.Genes[index]])

# 输出各区域颜色

def display(candidate, startTime):
    timeDiff = datetime.datetime.now() - startTime
    print("%s\t%i\t%s" % (''.join(map(str, candidate.Genes)), candidate.Fitness, str(timeDiff)))

# 检查各区域颜色是否与个体基因所代表的颜色一致
    
def getFitness(candidate, rules):
    rulesThatPass = 0
    for rule in rules:
        if candidate[rule.Item] != candidate[rule.Other]:
            rulesThatPass += 1
 
    return rulesThatPass

# 运行程序

GraphColoringTests().test()

2.3 结果展示

  执行上述代码,即可得到结果。在这里值得一提的是:这个代码不知道是其自身原因,还是我电脑的问题,执行起来非常慢——单次运行时间可能在5 ~ 6个小时左右,实在太慢了;大家如果感兴趣,可以尝试着能不能将代码的效率提升一下。

  代码执行完毕后得到的结果是文字形式的,具体如下图所示。

基于遗传算法的地图四色原理绘图上色的Python代码

  可以看到,通过203次迭代,找到了满足要求的地图配色方案,用时06小时06分钟;代码执行结果除显示出具体个体的整体基因型之外,还将分别显示78个小区域(小图斑)各自的具体颜色名称(我上面那幅图没有截全,实际上是78个小区域的颜色都会输出的)。

  当然,大家也可以发现,这种文字表达的代码执行结果显然不如直接来一幅如下所示的结果图直观。但是,由于代码单次执行时间实在是太久了,我也没再腾出时间(其实是偷懒)对结果的可视化加以修改。大家如果感兴趣的话,可以尝试对代码最终的结果呈现部分加以修改——例如,可以通过Matplotlib库的拓展——Basemap库将78个小区域的配色方案进行可视化。

基于遗传算法的地图四色原理绘图上色的Python代码

  至此,大功告成。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:基于遗传算法的地图四色原理绘图上色的Python代码 - Python技术站

(0)
上一篇 2023年3月31日 下午9:04
下一篇 2023年3月31日 下午9:04

相关文章

  • Python arcpy创建栅格、批量拼接栅格

      本文介绍基于Python语言arcpy模块,实现栅格影像图层建立与多幅遥感影像数据批量拼接(Mosaic)的操作。   首先,相关操作所需具体代码如下: import os import arcpy file_path=”G:/Postgraduate/LAI_Glass_RTlab/A2018161_Dif/DRT/” out_file_path=”G…

    Python开发 2023年3月31日
    00
  • Python导入Excel表格数据并以字典dict格式保存

      本文介绍基于Python语言,将一个Excel表格文件中的数据导入到Python中,并将其通过字典格式来存储的方法。   我们以如下所示的一个表格(.xlsx格式)作为简单的示例。其中,表格共有两列,第一列为学号,第二列为姓名,且每一行的学号都不重复;同时表格的第一行为表头。   假设我们需要将第一列的学号数据作为字典的键,而第二列姓名数据作为字典的值。…

    Python开发 2023年3月31日
    00
  • Python ArcPy批量计算多时相遥感影像的各项元平均值

      本文介绍基于Python中ArcPy模块,对大量长时间序列栅格遥感影像文件的每一个像元进行多时序平均值的求取。   在遥感应用中,我们经常需要对某一景遥感影像中的全部像元的像素值进行平均值求取——这一操作很好实现,基于ArcMap软件或者简单的Python代码就可以实现;但有时候,我们会需要结合同一地区、不同时相的多景遥感影像,求取每一个像元在全部时相中…

    python 2023年4月19日
    00
  • Python TensorFlow深度学习回归代码:DNNRegressor

      本文介绍基于Python语言中TensorFlow的tf.estimator接口,实现深度学习神经网络回归的具体方法。 目录 1 写在前面 2 代码分解介绍 2.1 准备工作 2.2 参数配置 2.3 原有模型删除 2.4 数据导入与数据划分 2.5 Feature Columns定义 2.6 模型优化方法构建与模型结构构建 2.7 模型训练 2.8 模…

    Python开发 2023年3月31日
    00
  • Python修改柱状图边缘柱子与图边界的距离

      本文介绍基于Python中matplotlib.pyplot模块,修改柱状图、条形图最两侧的柱子与图像边缘之间距离的方法。   最近,绘制了一个水平的柱状图,但是发现图的上、下边距(不是柱子与柱子相互之间的间距,而是最上方与最下方柱子各自与图边缘的距离)相对较大,非常影响美观。同时需要说明的是,本文这里的柱状图纵坐标变量是代表变量名称的不同的字符串,而不…

    Python开发 2023年3月31日
    00
  • Python核对遥感影像批量下载情况的方法

      本文介绍批量下载遥感影像时,利用Python实现已下载影像文件的核对,并自动生成未下载影像的下载链接列表的方法。   批量下载大量遥感影像数据对于GIS学生与从业人员可谓十分常见。然而,对于动辄成千上万景的遥感影像文件,下载过程中可能会出现各类失败问题,且或许在下载软件或工具中还不能很好显示失败的文件有哪些(这一点在批量下载MODIS产品时显得尤为突出,…

    Python开发 2023年3月31日
    00
  • Python实现类别变量的独热编码(One-hot Encoding)

      本文介绍基于Python下OneHotEncoder与pd.get_dummies两种方法,实现机器学习中最优的编码方法——独热编码的方法。 目录 1 OneHotEncoder 2 pd.get_dummies   在数据处理与分析领域,对数值型与字符型类别变量加以编码是不可或缺的预处理操作;这里介绍两种不同的方法。 1 OneHotEncoder  …

    Python开发 2023年3月31日
    00
  • Python求取文件夹内的文件数量、子文件夹内的文件数量

      本文介绍基于Python语言,统计文件夹中文件数量;若其含有子文件夹,还将对各子文件夹中的文件数量一并进行统计的方法。   最近,需要统计多个文件夹内部的文件数量,包括其中所含子文件夹中的文件数量。其中,这多个需要统计文件数量的文件夹都放在一个总文件夹内。   这一操作基于Python来实现是非常方便、快捷的。话不多说,我们对相关的Python代码来进行…

    Python开发 2023年3月31日
    00
合作推广
合作推广
分享本页
返回顶部