PyTorch模型的保存与加载方法实例

以下是PyTorch模型的保存与加载方法实例的详细攻略:

PyTorch提供了多种方法来保存和加载模型,包括使用pickle、torch.save和torch.load等方法。以下是使用torch.save和torch.load方法保存和加载模型的详细步骤:

  1. 定义模型并训练模型。

```python
import torch
import torch.nn as nn
import torch.optim as optim

# 定义模型
class Net(nn.Module):
def init(self):
super(Net, self).init()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

   def forward(self, x):
       x = self.pool(F.relu(self.conv1(x)))
       x = self.pool(F.relu(self.conv2(x)))
       x = x.view(-1, 16 * 5 * 5)
       x = F.relu(self.fc1(x))
       x = F.relu(self.fc2(x))
       x = self.fc3(x)
       return x

# 定义数据集和数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=4)

# 定义模型、损失函数和优化器
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0

print('Finished Training')
```

  1. 保存模型。

python
# 保存模型
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)

这个代码会将模型的参数保存到指定的文件中。

  1. 加载模型。

python
# 加载模型
net = Net()
net.load_state_dict(torch.load(PATH))

这个代码会从指定的文件中加载模型的参数,并将其应用到新的模型中。

以下是两个示例说明:

示例1:使用保存的模型进行预测

以下是一个使用保存的模型进行预测的示例代码:

import torch
import torchvision.transforms as transforms
from PIL import Image

# 定义数据预处理
transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])

# 加载模型
net = Net()
net.load_state_dict(torch.load(PATH))

# 加载图片并进行预测
image = Image.open('test.jpg')
image = transform(image)
image = image.unsqueeze(0)
output = net(image)
_, predicted = torch.max(output, 1)
print(predicted)

在这个示例中,我们首先定义了数据预处理方式,然后使用Net类加载模型,并使用load_state_dict方法从文件中加载模型的参数。接着,我们使用PIL库加载图片,并进行数据处理。最后,我们使用训练好的模型对图片进行预测,并输出预测结果。

示例2:使用保存的模型进行微调

以下是一个使用保存的模型进行微调的示例代码:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets

# 定义数据预处理
transform = transforms.Compose([
    transforms.Resize((32, 32)),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])

# 加载数据集
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)

# 定义数据加载器
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=4)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=4)

# 加载模型
net = Net()
net.load_state_dict(torch.load(PATH))

# 将模型的最后一层替换为新的全连接层
num_ftrs = net.fc3.in_features
net.fc3 = nn.Linear(num_ftrs, 2)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 训练模型
for epoch in range(10):
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        inputs, labels = data
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if i % 2000 == 1999:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

在这个示例中,我们首先定义了数据预处理方式,然后使用CIFAR10类加载数据集。接着,我们使用Net类加载模型,并使用load_state_dict方法从文件中加载模型的参数。我们将模型的最后一层替换为新的全连接层,并使用交叉熵损失函数和随机梯度下降优化器来微调模型。最后,我们使用微调后的模型对测试集进行预测,并输出预测准确率。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:PyTorch模型的保存与加载方法实例 - Python技术站

(0)
上一篇 2023年5月16日
下一篇 2023年5月16日

相关文章

  • pytorch 实现冻结部分参数训练另一部分

    PyTorch实现冻结部分参数训练另一部分 在本文中,我们将介绍如何使用PyTorch实现冻结部分参数并训练另一部分。我们将提供两个示例,一个是冻结卷积层参数,另一个是冻结全连接层参数。 示例1:冻结卷积层参数 以下是冻结卷积层参数并训练全连接层的示例代码: import torch import torch.nn as nn import torchvis…

    PyTorch 2023年5月16日
    00
  • LeNet-5 pytorch+torchvision+visdom

    # ====================LeNet-5_main.py=============== # pytorch+torchvision+visdom 1 # -*- coding: utf-8 -*- 2 “”” 3 Created on Sun May 26 22:53:52 2019 4 5 @author: jiangshan 6 “””…

    PyTorch 2023年4月6日
    00
  • pytorch中如何在lstm中输入可变长的序列

    PyTorch 训练 RNN 时,序列长度不固定怎么办? pytorch中如何在lstm中输入可变长的序列 上面两篇文章写得很好,把LSTM中训练变长序列所需的三个函数讲解的很清晰,但是这两篇文章没有给出完整的训练代码,并且没有写关于带label的情况,为此,本文给出一个完整的带label的训练代码: import torch from torch impo…

    2023年4月7日
    00
  • pytorch–之halfTensor的使用详解

    pytorch–之halfTensor的使用详解 在PyTorch中,halfTensor是一种半精度浮点数类型的张量,它可以在减少内存占用的同时提高计算速度。本文将介绍如何使用halfTensor,并演示两个示例。 示例一:将floatTensor转换为halfTensor import torch # 定义一个floatTensor x = torch…

    PyTorch 2023年5月15日
    00
  • 登峰造极,师出造化,Pytorch人工智能AI图像增强框架ControlNet绘画实践,基于Python3.10

    人工智能太疯狂,传统劳动力和内容创作平台被AI枪毙,弃尸尘埃。并非空穴来风,也不是危言耸听,人工智能AI图像增强框架ControlNet正在疯狂地改写绘画艺术的发展进程,你问我绘画行业未来的样子?我只好指着ControlNet的方向。本次我们在M1/M2芯片的Mac系统下,体验人工智能登峰造极的绘画艺术。 人工智能太疯狂,传统劳动力和内容创作平台被AI枪毙,…

    2023年4月5日
    00
  • 教你用PyTorch部署模型的方法

    教你用PyTorch部署模型的方法 PyTorch是一种常用的深度学习框架,它提供了丰富的工具和函数,可以帮助我们快速构建和训练深度学习模型。在模型训练完成后,我们通常需要将模型部署到生产环境中,以便进行实时预测和推理。本文将详细讲解如何使用PyTorch部署模型的方法,并提供两个示例说明。 1. PyTorch模型的部署方法 PyTorch模型的部署方法通…

    PyTorch 2023年5月16日
    00
  • 梯度下降与pytorch

    记得在tensorflow的入门里,介绍梯度下降算法的有效性时使用的例子求一个二次曲线的最小值。 这里使用pytorch复现如下: 1、手动计算导数,按照梯度下降计算 import torch #使用梯度下降法求y=x^2+2x+1 最小值 从x=3开始 x=torch.Tensor([3]) for epoch in range(100): y=x**2+…

    PyTorch 2023年4月7日
    00
  • pytorch提取神经网络模型层结构和参数初始化

    torch.nn.Module()类有一些重要属性,我们可用其下面几个属性来实现对神经网络层结构的提取: torch.nn.Module.children() torch.nn.Module.modules() torch.nn.Module.named_children() torch.nn.Module.named_moduless() 为方面说明,我们…

    2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部