Pytorch之parameters的使用

PyTorch之parameters的使用

在使用PyTorch进行深度学习开发时,我们经常需要对模型的参数进行操作,例如初始化、保存和加载等。本文将介绍如何使用PyTorch的parameters模块来进行参数操作,并演示两个示例。

示例一:初始化模型参数

import torch

# 定义一个模型
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear = torch.nn.Linear(10, 1)

    def forward(self, x):
        out = self.linear(x)
        return out

# 实例化模型
model = Model()

# 初始化模型参数
for name, param in model.named_parameters():
    if 'bias' in name:
        torch.nn.init.constant_(param, 0.0)
    elif 'weight' in name:
        torch.nn.init.xavier_normal_(param)

在上述代码中,我们首先定义了一个模型Model,并实例化模型。然后,我们使用named_parameters()方法获取模型的所有参数,并使用if语句判断参数的类型。如果是偏置参数,则使用constant_()方法将其初始化为0;如果是权重参数,则使用xavier_normal_()方法将其初始化为服从正态分布的随机数。

示例二:保存和加载模型参数

import torch

# 定义一个模型
class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear = torch.nn.Linear(10, 1)

    def forward(self, x):
        out = self.linear(x)
        return out

# 实例化模型
model = Model()

# 保存模型参数
torch.save(model.state_dict(), 'model.pth')

# 加载模型参数
model.load_state_dict(torch.load('model.pth'))

在上述代码中,我们首先定义了一个模型Model,并实例化模型。然后,我们使用save()方法将模型的参数保存到文件model.pth中。最后,我们使用load_state_dict()方法加载模型参数。

结论

总之,在PyTorch中,我们可以使用parameters模块来对模型的参数进行操作,例如初始化、保存和加载等。需要注意的是,不同的参数操作可能需要不同的方法和参数,因此需要根据实际情况进行调整。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pytorch之parameters的使用 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • Pytorch中torch.repeat_interleave()函数使用及说明

    当您需要将一个张量中的每个元素重复多次时,可以使用PyTorch中的torch.repeat_interleave()函数。本文将详细介绍torch.repeat_interleave()函数的使用方法和示例。 torch.repeat_interleave()函数 torch.repeat_interleave()函数的作用是将输入张量中的每个元素重复多次…

    PyTorch 2023年5月15日
    00
  • Pytorch学习:CIFAR-10分类

    最近在学习Pytorch,先照着别人的代码过一遍,加油!!!   加载数据集 # 加载数据集及预处理 import torchvision as tv import torchvision.transforms as transforms from torchvision.transforms import ToPILImage import torch a…

    PyTorch 2023年4月6日
    00
  • Pytorch离线安装方法

    由于一些内网环境无法使用pip命令安装python三方库,寻求一种能够离线安装pytorch的方法。 方法 由于是内网,首选使用Anaconda代替Python,这样无需手动配置numpy等额外依赖。 访问pytorch离线下载网址根据系统和CUDA版本选择自己需要的whl文件 一共有两个,pytorch和torchvision,例如win10x64下cud…

    PyTorch 2023年4月8日
    00
  • [pytorch][模型压缩] 通道裁剪后的模型设计——以MobileNet和ResNet为例

    说明 模型裁剪可分为两种,一种是稀疏化裁剪,裁剪的粒度为值级别,一种是结构化裁剪,最常用的是通道裁剪。通道裁剪是减少输出特征图的通道数,对应的权值是卷积核的个数。 问题 通常模型裁剪的三个步骤是:1. 判断网络中不重要的通道 2. 删减掉不重要的通道(一般不会立即删,加mask等到评测时才开始删) 3. 将模型导出,然后进行finetue恢复精度。 步骤1,…

    PyTorch 2023年4月8日
    00
  • Pytorch中RNN参数解释

      其实构建rnn的代码十分简单,但是实际上看了下csdn以及官方tutorial的解释都不是很详细,说的意思也不能够让人理解,让大家可能会造成一定误解,因此这里对rnn的参数做一个详细的解释: self.encoder = nn.RNN(input_size=300,hidden_size=128,dropout=0.5) 在这句代码当中: input_s…

    PyTorch 2023年4月8日
    00
  • pytorch中动态调整学习率

    https://blog.csdn.net/bc521bc/article/details/85864555 这篇bolg说的很详细了,但是具体在代码中怎么用还是有点模糊。自己试验了一下,顺路记一下,其实很简单,在optimizer后面定义一下,然后在每个epoch中step一下就可以了。一开始出错是因为我把step放到 T_optimizer.step()…

    PyTorch 2023年4月6日
    00
  • 动手学深度学习PyTorch版-task03

    课后习题 训练集、验证集和测试集的意义https://blog.csdn.net/ch1209498273/article/details/78266558有了模型后,训练集就是用来训练参数的,说准确点,一般是用来梯度下降的。而验证集基本是在每个epoch完成后,用来测试一下当前模型的准确率。因为验证集跟训练集没有交集,因此这个准确率是可靠的。那么为啥还需要…

    2023年4月8日
    00
  • 关于PyTorch 自动求导机制详解

    关于PyTorch自动求导机制详解 在PyTorch中,自动求导机制是深度学习中非常重要的一部分。它允许我们自动计算梯度,从而使我们能够更轻松地训练神经网络。在本文中,我们将详细介绍PyTorch的自动求导机制,并提供两个示例说明。 示例1:使用PyTorch自动求导机制计算梯度 以下是一个使用PyTorch自动求导机制计算梯度的示例代码: import t…

    PyTorch 2023年5月16日
    00
合作推广
合作推广
分享本页
返回顶部