Python图像处理丨带你认识图像量化处理及局部马赛克特效

摘要:本文主要讲述如何进行图像量化处理和采样处理及局部马赛克特效。

本文分享自华为云社区《[Python图像处理] 二十.图像量化处理和采样处理及局部马赛克特效》,作者: eastmount。

本文主要讲述如何进行图像量化处理和采样处理及局部马赛克特效。

一.图像量化处理

图像通常是自然界景物的客观反映,并以照片形式或视频记录的介质连续保存,获取图像的目标是从感知的数据中产生数字图像,因此需要把连续的图像数据离散化,转换为数字化图像,其工作主要包括两方面——量化和采样。数字化幅度值称为量化,数字化坐标值称为采样。本章主要讲解图像量化和采样处理的概念,并通过Python和OpenCV实现这些功能。

1.1 概述

所谓量化(Quantization),就是将图像像素点对应亮度的连续变化区间转换为单个特定值的过程,即将原始灰度图像的空间坐标幅度值离散化。量化等级越多,图像层次越丰富,灰度分辨率越高,图像的质量也越好;量化等级越少,图像层次欠丰富,灰度分辨率越低,会出现图像轮廓分层的现象,降低了图像的质量。图6-1是将图像的连续灰度值转换为0至255的灰度级的过程。

Python图像处理丨带你认识图像量化处理及局部马赛克特效

如果量化等级为2,则将使用两种灰度级表示原始图片的像素(0-255),灰度值小于128的取0,大于等于128的取128;如果量化等级为4,则将使用四种灰度级表示原始图片的像素,新图像将分层为四种颜色,0-64区间取0,64-128区间取64,128-192区间取128,192-255区间取192;依次类推。

图6-2是对比不同量化等级的“Lena”图。其中(a)的量化等级为256,(b)的量化等级为64,(c)的量化等级为16,(d)的量化等级为8,(e)的量化等级为4,(f)的量化等级为2。

Python图像处理丨带你认识图像量化处理及局部马赛克特效

1.2 操作

下面讲述Python图像量化处理相关代码操作。其核心流程是建立一张临时图片,接着循环遍历原始图像中所有像素点,判断每个像素点应该属于的量化等级,最后将临时图像显示。下述代码将灰度图像转换为两种量化等级。

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('lena.png')
#获取图像高度和宽度
height = img.shape[0]
width = img.shape[1]
#创建一幅图像
new_img = np.zeros((height, width, 3), np.uint8)
#图像量化操作 量化等级为2
for i in range(height):
 for j in range(width):
 for k in range(3): #对应BGR三分量
 if img[i, j][k] < 128:
                gray = 0
 else:
                gray = 128
 new_img[i, j][k] = np.uint8(gray)
#显示图像
cv2.imshow("src", img)
cv2.imshow("", new_img)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其输出结果如图6-3所示,它将灰度图像划分为两种量化等级。

Python图像处理丨带你认识图像量化处理及局部马赛克特效

下面的代码分别比较了量化等级为2、4、8的量化处理效果。

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('lena.png')
#获取图像高度和宽度
height = img.shape[0]
width = img.shape[1]
#创建一幅图像
new_img1 = np.zeros((height, width, 3), np.uint8)
new_img2 = np.zeros((height, width, 3), np.uint8)
new_img3 = np.zeros((height, width, 3), np.uint8)
#图像量化等级为2的量化处理
for i in range(height):
 for j in range(width):
 for k in range(3): #对应BGR三分量
 if img[i, j][k] < 128:
                gray = 0
 else:
                gray = 128
            new_img1[i, j][k] = np.uint8(gray)
#图像量化等级为4的量化处理
for i in range(height):
 for j in range(width):
 for k in range(3): #对应BGR三分量
 if img[i, j][k] < 64:
                gray = 0
 elif img[i, j][k] < 128:
                gray = 64
 elif img[i, j][k] < 192:
                gray = 128
 else:
                gray = 192
            new_img2[i, j][k] = np.uint8(gray)
#图像量化等级为8的量化处理
for i in range(height):
 for j in range(width):
 for k in range(3): #对应BGR三分量
 if img[i, j][k] < 32:
                gray = 0
 elif img[i, j][k] < 64:
                gray = 32
 elif img[i, j][k] < 96:
                gray = 64
 elif img[i, j][k] < 128:
                gray = 96
 elif img[i, j][k] < 160:
                gray = 128
 elif img[i, j][k] < 192:
                gray = 160
 elif img[i, j][k] < 224:
                gray = 192
 else:
                gray = 224
            new_img3[i, j][k] = np.uint8(gray)
#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']
#显示图像
titles = [u'(a) 原始图像', u'(b) 量化-L2', u'(c) 量化-L4', u'(d) 量化-L8'] 
images = [img, new_img1, new_img2, new_img3] 
for i in xrange(4): 
 plt.subplot(2,2,i+1), plt.imshow(images[i], 'gray'), 
 plt.title(titles[i]) 
 plt.xticks([]),plt.yticks([]) 
plt.show()

输出结果如图6-4所示,该代码调用matplotlib.pyplot库绘制了四幅图像,其中(a)表示原始图像,(b)表示等级为2的量化处理,(c)表示等级为4的量化处理,(d)表示等级为8的量化处理。

Python图像处理丨带你认识图像量化处理及局部马赛克特效

1.3 K-Means聚类量化处理

上一小节的量化处理是通过遍历图像中的所有像素点,进行灰度图像的幅度值离散化处理。本小节补充一个基于K-Means聚类算法的量化处理过程,它能够将彩色图像RGB像素点进行颜色分割和颜色量化。更多知识推荐大家学习前一篇文章。

# coding: utf-8
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('people.png') 
#图像二维像素转换为一维
data = img.reshape((-1,3))
data = np.float32(data)
#定义中心 (type,max_iter,epsilon)
criteria = (cv2.TERM_CRITERIA_EPS +
            cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0)
#设置标签
flags = cv2.KMEANS_RANDOM_CENTERS
#K-Means聚类 聚集成4类
compactness, labels, centers = cv2.kmeans(data, 4, None, criteria, 10, flags)
#图像转换回uint8二维类型
centers = np.uint8(centers)
res = centers[labels.flatten()]
dst = res.reshape((img.shape))
#图像转换为RGB显示
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
dst = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB)
#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']
#显示图像
titles = [u'原始图像', u'聚类量化 K=4'] 
images = [img, dst] 
for i in xrange(2): 
 plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray'), 
 plt.title(titles[i]) 
 plt.xticks([]),plt.yticks([]) 
plt.show()

输出结果如图6-4所示,它通过K-Means聚类算法将彩色人物图像的灰度聚集成四种颜色。

Python图像处理丨带你认识图像量化处理及局部马赛克特效

二.图像采样处理

2.1 概述

图像采样(Image Sampling)处理是将一幅连续图像在空间上分割成M×N个网格,每个网格用一个亮度值或灰度值来表示,其示意图如图6-5所示。

Python图像处理丨带你认识图像量化处理及局部马赛克特效

图像采样的间隔越大,所得图像像素数越少,空间分辨率越低,图像质量越差,甚至出现马赛克效应;相反,图像采样的间隔越小,所得图像像素数越多,空间分辨率越高,图像质量越好,但数据量会相应的增大。图6-6展示了不同采样间隔的“Lena”图。

Python图像处理丨带你认识图像量化处理及局部马赛克特效

2.2 操作

下面讲述Python图像采样处理相关代码操作。其核心流程是建立一张临时图片,设置需要采样的区域大小(如16×16),接着循环遍历原始图像中所有像素点,采样区域内的像素点赋值相同(如左上角像素点的灰度值),最终实现图像采样处理。代码是进行16×16采样的过程。

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('scenery.png')
#获取图像高度和宽度
height = img.shape[0]
width = img.shape[1]
#采样转换成16*16区域
numHeight = height/16
numwidth = width/16
#创建一幅图像
new_img = np.zeros((height, width, 3), np.uint8)
#图像循环采样16*16区域
for i in range(16):
 #获取Y坐标
    y = i*numHeight
 for j in range(16):
 #获取X坐标
        x = j*numwidth
 #获取填充颜色 左上角像素点
        b = img[y, x][0]
        g = img[y, x][1]
        r = img[y, x][2]
 #循环设置小区域采样
 for n in range(numHeight):
 for m in range(numwidth):
 new_img[y+n, x+m][0] = np.uint8(b)
 new_img[y+n, x+m][1] = np.uint8(g)
 new_img[y+n, x+m][2] = np.uint8(r)
#显示图像
cv2.imshow("src", img)
cv2.imshow("", new_img)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下图所示:

Python图像处理丨带你认识图像量化处理及局部马赛克特效

同样,可以对彩色图像进行采样处理,下面的代码将彩色风景图像采样处理成8×8的马赛克区域。

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread('scenery.png')
#获取图像高度和宽度
height = img.shape[0]
width = img.shape[1]
#采样转换成8*8区域
numHeight = height/8
numwidth = width/8
#创建一幅图像
new_img = np.zeros((height, width, 3), np.uint8)
#图像循环采样8*8区域
for i in range(8):
 #获取Y坐标
    y = i*numHeight
 for j in range(8):
 #获取X坐标
        x = j*numwidth
 #获取填充颜色 左上角像素点
        b = img[y, x][0]
        g = img[y, x][1]
        r = img[y, x][2]
 #循环设置小区域采样
 for n in range(numHeight):
 for m in range(numwidth):
 new_img[y+n, x+m][0] = np.uint8(b)
 new_img[y+n, x+m][1] = np.uint8(g)
 new_img[y+n, x+m][2] = np.uint8(r)
#显示图像
cv2.imshow("src", img)
cv2.imshow("Sampling", new_img)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其输出结果如图所示,它将彩色风景图像采样成8×8的区域。

Python图像处理丨带你认识图像量化处理及局部马赛克特效

但上述代码存在一个问题,当图像的长度和宽度不能被采样区域整除时,输出图像的最右边和最下边的区域没有被采样处理。这里推荐读者做个求余运算,将不能整除部门的区域也进行采样处理。

Python图像处理丨带你认识图像量化处理及局部马赛克特效

2.3 局部马赛克处理

前面讲述的代码是对整幅图像进行采样处理,那么如何对图像的局部区域进行马赛克处理呢?下面的代码就实现了该功能。当鼠标按下时,它能够给鼠标拖动的区域打上马赛克,并按下“s”键保存图像至本地。

# -- coding:utf-8 --
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
im = cv2.imread('people.png', 1)
#设置鼠标左键开启
en = False
#鼠标事件
def draw(event, x, y, flags, param):
 global en
 #鼠标左键按下开启en值
 if event==cv2.EVENT_LBUTTONDOWN:
 en = True
 #鼠标左键按下并且移动
elif event==cv2.EVENT_MOUSEMOVE and
 flags==cv2.EVENT_LBUTTONDOWN:
 #调用函数打马赛克
 if en:
 drawMask(y,x)
 #鼠标左键弹起结束操作
 elif event==cv2.EVENT_LBUTTONUP:
 en = False
#图像局部采样操作 
def drawMask(x, y, size=10):
 #size*size采样处理
    m = x / size * size  
    n = y / size * size
 print m, n
 #10*10区域设置为同一像素值
 for i in range(size):
 for j in range(size):
 im[m+i][n+j] = im[m][n]
#打开对话框
cv2.namedWindow('image')
#调用draw函数设置鼠标操作
cv2.setMouseCallback('image', draw)
#循环处理
while(1):
    cv2.imshow('image', im)
 #按ESC键退出
 if cv2.waitKey(10)&0xFF==27:
 break
 #按s键保存图片
 elif cv2.waitKey(10)&0xFF==115:
        cv2.imwrite('sava.png', im)
#退出窗口
cv2.destroyAllWindows()

其输出结果如图所示,它将人物的脸部进行马赛克处理。

Python图像处理丨带你认识图像量化处理及局部马赛克特效

 

点击关注,第一时间了解华为云新鲜技术~

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python图像处理丨带你认识图像量化处理及局部马赛克特效 - Python技术站

(0)
上一篇 2023年4月2日
下一篇 2023年4月2日

相关文章

  • CANN开发实践:4个DVPP内存问题的典型案例解读

    摘要:由于DVPP媒体数据处理功能对存放输入、输出数据的内存有更高的要求(例如,内存首地址128字节对齐),因此需调用专用的内存申请接口,那么本期就分享几个关于DVPP内存问题的典型案例,并给出原因分析及解决方法。 本文分享自华为云社区《FAQ_DVPP内存问题案例》,作者:昇腾CANN。 DVPP是昇腾AI处理器内置的图像处理单元,通过AscendCL媒体…

    人工智能概论 2023年4月19日
    00
  • 拒绝“爆雷”!GaussDB(for MySQL)新上线了这个功能

    摘要:智能把控大数据量查询,防患系统奔溃于未然。 本文分享自华为云社区《拒绝“爆雷”!GaussDB(for MySQL)新上线了这个功能》,作者:GaussDB 数据库。 什么是最大读取行 一直以来,大数据量查询是数据库DBA们调优的重点,DBA们通常十八般武艺轮番上阵以期提升大数据查询的性能:例如分库分表、给表增加索引、设定合理的WHERE查询条件、限定…

    MySQL 2023年4月18日
    00
  • 一文详解RocketMQ-Spring的源码解析与实战

    摘要:这篇文章主要介绍 Spring Boot 项目使用 rocketmq-spring SDK 实现消息收发的操作流程,同时笔者会从开发者的角度解读 SDK 的设计逻辑。 本文分享自华为云社区《RocketMQ-Spring : 实战与源码解析一网打尽》,作者:勇哥java实战分享。 RocketMQ 是大家耳熟能详的消息队列,开源项目 rocketmq-…

    Java 2023年4月25日
    00
  • Python图像处理丨详解图像去雾处理方法

    摘要:本文主要讲解ACE去雾算法、暗通道先验去雾算法以及雾化生成算法。 本文分享自华为云社区《[Python图像处理] 三十.图像预处理之图像去雾详解(ACE算法和暗通道先验去雾算法)丨【拜托了,物联网!】》,作者:eastmount 。 一.图像去雾 随着社会的发展,环境污染逐渐加剧,越来越多的城市频繁出现雾霾,这不仅给人们的身体健康带来危害,还给那些依赖…

    2023年4月2日
    00
  • 人工智能打造充满创造力的新世界,华为云开发者日无锡站成功举办

    摘要:近日,华为云开发者日HDC.Cloud Day无锡站成功举行,开发者不仅聆听了华为云技术专家在生成式AI、元宇宙、AIoT、工业互联网等领域的前沿技术分享,还在KooLabs工作坊、展台等环节,亲身体验华为云产品的技术魅力。 3月21日,华为云开发者日HDC.Cloud Day无锡站成功举行,开发者不仅聆听了华为云技术专家在生成式AI、元宇宙、AIoT…

    云计算 2023年4月17日
    00
  • 关于数智融合,看看这20位专家都聊了什么

    摘要:由创原会与福佑卡车联合举办的2023年首场畅聊云原生活动在福佑卡车北京总部举办。 本文分享自华为云社区《畅聊云原生·第八期 | 关于数智融合,看看这20位专家都聊了什么》,作者:创原会。 畅聊云原生[第八期]探讨的话题选择了大家热议的“数智融合“,活动荣幸地邀请到福佑卡车技术合伙人陈冠岭、软通运力CTO刘会福、畅销书《人工智能产品经理》作者张竞宇、华为…

    云计算 2023年4月17日
    00
  • Karmada v1.5发布:多调度组助力成本优化

    摘要:在最新发布的1.5版本中,Karmada 提供了多调度组的能力,利用该能力,用户可以实现将业务优先调度到成本更低的集群,或者在主集群故障时,优先迁移业务到指定的备份集群。 本文分享自华为云社区《Karmada v1.5发布!多调度组助力成本优化》,作者:华为云云原生团队。 Karmada 是开放的多云多集群容器编排引擎,旨在帮助用户在多云环境下部署和运…

    云计算 2023年4月19日
    00
  • 云图说|图解开天企业工作台MSSE

    摘要:开天企业工作台是面向企业用户的一站式数字工作台。 本文分享自华为云社区《【开天aPaaS】图解开天企业工作台MSSE》,作者:开天aPaaS小助手。 开天企业工作台(MacroVerse SmartStage for Enterprises,MSSE)是面向企业用户的一站式数字工作台,为企业提供用户、组织、应用、授权等统一管理能力和灵活的门户编排能力,…

    云计算 2023年4月17日
    00
合作推广
合作推广
分享本页
返回顶部