跟我学Python丨图像增强及运算:局部直方图均衡化和自动色彩均衡化处理

摘要:本文主要讲解图像局部直方图均衡化和自动色彩均衡化处理。这些算法可以广泛应用于图像增强、图像去噪、图像去雾等领域。

本文分享自华为云社区《[Python从零到壹] 五十四.图像增强及运算篇之局部直方图均衡化和自动色彩均衡化处理》,作者: eastmount。

一.局部直方图均衡化

前文通过调用OpenCV中equalizeHist()函数实现直方图均衡化处理,该方法简单高效,但其实它是一种全局意义上的均衡化处理,很多时候这种操作不是很好,会把某些不该调整的部分给均衡处理了。同时,图像中不同的区域灰度分布相差甚远,对它们使用同一种变换常常产生不理想的效果,实际应用中,常常需要增强图像的某些局部区域的细节。

为了解决这类问题,Pizer等提出了局部直方图均衡化的方法(AHE),但AHE方法仅仅考虑了局部区域的像素,忽略了图像其他区域的像素,且对于图像中相似区域具有过度放大噪声的缺点。为此K. Zuiderveld等人提出了对比度受限CLAHE的图像增强方法,通过限制局部直方图的高度来限制局部对比度的增强幅度,从而限制噪声的放大及局部对比度的过增强,该方法常用于图像增强,也可以被用来进行图像去雾操作[1-2]。

在OpenCV中,调用函数createCLAHE()实现对比度受限的局部直方图均衡化。它将整个图像分成许多小块(比如按10×10作为一个小块),那么对每个小块进行均衡化。这种方法主要对于图像直方图不是那么单一的(比如存在多峰情况)图像比较实用。其函数原型如下所示:

retval = createCLAHE([, clipLimit[, tileGridSize]])

  • clipLimit参数表示对比度的大小
  • tileGridSize参数表示每次处理块的大小

调用createCLAHE()实现对比度受限的局部直方图均衡化的代码如下:

# -*- coding: utf-8 -*-
# By:Eastmount
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取图片
img = cv2.imread('lena.bmp')
#灰度转换
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#局部直方图均衡化处理
clahe = cv2.createCLAHE(clipLimit=2, tileGridSize=(10,10))
#将灰度图像和局部直方图相关联, 把直方图均衡化应用到灰度图 
result = clahe.apply(gray)
#显示图像
plt.subplot(221)
plt.imshow(gray, cmap=plt.cm.gray), plt.axis("off"), plt.title('(a)') 
plt.subplot(222)
plt.imshow(result, cmap=plt.cm.gray), plt.axis("off"), plt.title('(b)') 
plt.subplot(223)
plt.hist(img.ravel(), 256), plt.title('(c)') 
plt.subplot(224)
plt.hist(result.ravel(), 256), plt.title('(d)') 
plt.show()

输出结果如图1所示,图1(a)为原始图像,对应的直方图为图1©,图1(b)和图1(d)为对比度受限的局部直方图均衡化处理后的图像及对应直方图,它让图像的灰度值分布更加均衡。可以看到,相对于全局的直方图均衡化,这个局部的均衡化似乎得到的效果更自然一点。

跟我学Python丨图像增强及运算:局部直方图均衡化和自动色彩均衡化处理

二.自动色彩均衡化

Retinex算法是代表性的图像增强算法,它根据人的视网膜和大脑皮层模拟对物体颜色的波长光线反射能力而形成,对复杂环境下的一维条码具有一定范围内的动态压缩,对图像边缘有着一定自适应的增强。自动色彩均衡(Automatic Color Enhancement,ACE)算法是在Retinex算法的理论上提出的,它通过计算图像目标像素点和周围像素点的明暗程度及其关系来对最终的像素值进行校正,实现图像的对比度调整,产生类似人体视网膜的色彩恒常性和亮度恒常性的均衡,具有很好的图像增强效果[3-4]。

ACE算法包括两个步骤,一是对图像进行色彩和空域调整,完成图像的色差校正,得到空域重构图像;二是对校正后的图像进行动态扩展。ACE算法计算公式如下:

跟我学Python丨图像增强及运算:局部直方图均衡化和自动色彩均衡化处理

其中,W是权重参数,离中心点像素越远的W值越小;g是相对对比度调节参数,其计算方法如公式(22-2)所示,a表示控制参数,值越大细节增强越明显。

跟我学Python丨图像增强及运算:局部直方图均衡化和自动色彩均衡化处理

图2是条形码图像进行ACE图像增强后的效果图,通过图像增强后的图(b)对比度更强,改善了原图像的明暗程度,增强的同时保持了图像的真实性。

跟我学Python丨图像增强及运算:局部直方图均衡化和自动色彩均衡化处理

由于OpenCV中暂时没有ACE算法包,下面的代码是借鉴“zmshy2128”老师的文章,修改实现的彩色直方图均衡化处理[5]。

# -*- coding: utf-8 -*-
# By:Eastmount
# 参考zmshy2128老师文章
import cv2
import numpy as np
import math
import matplotlib.pyplot as plt
#线性拉伸处理
#去掉最大最小0.5%的像素值 线性拉伸至[0,1]
def stretchImage(data, s=0.005, bins = 2000): 
 ht = np.histogram(data, bins);
    d = np.cumsum(ht[0])/float(data.size)
 lmin = 0; lmax=bins-1
 while lmin<bins:
 if d[lmin]>=s:
 break
 lmin+=1
 while lmax>=0:
 if d[lmax]<=1-s:
 break
 lmax-=1
 return np.clip((data-ht[1][lmin])/(ht[1][lmax]-ht[1][lmin]), 0,1)
#根据半径计算权重参数矩阵
g_para = {}
def getPara(radius = 5): 
 global g_para
    m = g_para.get(radius, None)
 if m is not None:
 return m
    size = radius*2+1
    m = np.zeros((size, size))
 for h in range(-radius, radius+1):
 for w in range(-radius, radius+1):
 if h==0 and w==0:
 continue
 m[radius+h, radius+w] = 1.0/math.sqrt(h**2+w**2)
    m /= m.sum()
 g_para[radius] = m
 return m
#常规的ACE实现
def zmIce(I, ratio=4, radius=300): 
    para = getPara(radius)
 height,width = I.shape
 #Python3报错如下 使用列表append修改
 zh = []
 zw = []
    n = 0
 while n < radius:
 zh.append(0)
 zw.append(0)
        n += 1
 for n in range(height):
 zh.append(n)
 for n in range(width):
 zw.append(n)
    n = 0
 while n < radius:
 zh.append(height-1)
 zw.append(width-1)
        n += 1
 #print(zh)
 #print(zw)
    Z = I[np.ix_(zh, zw)]
    res = np.zeros(I.shape)
 for h in range(radius*2+1):
 for w in range(radius*2+1):
 if para[h][w] == 0:
 continue
            res += (para[h][w] * np.clip((I-Z[h:h+height, w:w+width])*ratio, -1, 1))
 return res
#单通道ACE快速增强实现
def zmIceFast(I, ratio, radius):
 print(I)
    height, width = I.shape[:2]
 if min(height, width) <=2:
 return np.zeros(I.shape)+0.5
    Rs = cv2.resize(I, (int((width+1)/2), int((height+1)/2)))
    Rf = zmIceFast(Rs, ratio, radius) #递归调用
    Rf = cv2.resize(Rf, (width, height))
    Rs = cv2.resize(Rs, (width, height))
 return Rf+zmIce(I,ratio, radius)-zmIce(Rs,ratio,radius) 
#rgb三通道分别增强 ratio是对比度增强因子 radius是卷积模板半径 
def zmIceColor(I, ratio=4, radius=3): 
    res = np.zeros(I.shape)
 for k in range(3):
        res[:,:,k] = stretchImage(zmIceFast(I[:,:,k], ratio, radius))
 return res
#主函数
if __name__ == '__main__':
 img = cv2.imread('test01.png')
    res = zmIceColor(img/255.0)*255
    cv2.imwrite('Ice.jpg', res)

运行结果如图3和图4所示,ACE算法能有效进行图像去雾处理,实现图像的细节增强。

跟我学Python丨图像增强及运算:局部直方图均衡化和自动色彩均衡化处理

三.总结

本文主要讲解图像局部直方图均衡化和自动色彩均衡化处理。这些算法可以广泛应用于图像增强、图像去噪、图像去雾等领域。

 

点击关注,第一时间了解华为云新鲜技术~

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:跟我学Python丨图像增强及运算:局部直方图均衡化和自动色彩均衡化处理 - Python技术站

(0)
上一篇 2023年3月31日 下午9:09
下一篇 2023年3月31日 下午9:10

相关文章

  • 跟我学Python图像处理丨图像特效处理:毛玻璃、浮雕和油漆特效

    摘要:本文讲解常见的图像特效处理,从而让读者实现各种各样的图像特殊效果,并通过Python和OpenCV实现。 本文分享自华为云社区《[Python图像处理] 二十四.图像特效处理之毛玻璃、浮雕和油漆特效》,作者:eastmount。 一.图像毛玻璃特效 图像毛玻璃特效如图所示,左边为原始图像,右边为毛玻璃特效图像。它是用图像邻域内随机一个像素点的颜色来替代…

    2023年4月2日
    00
  • Python从0到1丨细说图像增强及运算

    摘要:本文主要讲解常见的图像锐化和边缘检测方法,即Roberts算子和Prewitt算子。 本文分享自华为云社区《[Python从零到壹] 五十七.图像增强及运算篇之图像锐化Roberts、Prewitt算子实现边缘检测》,作者: eastmount。 一.图像锐化 由于收集图像数据的器件或传输图像的通道存在一些质量缺陷,或者受其他外界因素的影响,使得图像存…

    2023年3月31日
    00
  • 从源码角度深入解析Callable接口

    摘要:从源码角度深入解析Callable接口,希望大家踏下心来,打开你的IDE,跟着文章看源码,相信你一定收获不小。 本文分享自华为云社区《一个Callable接口能有多少知识点?》,作者: 冰 河。 并发编程一直是程序员们比较头疼的,如何编写正确的并发程序相比其他程序来说,是一件比较困难的事情,并发编程中出现的 Bug 往往也是特别诡异的。 之所以说并发编…

    Java 2023年4月18日
    00
  • 当Serverless遇到Regionless:现状与挑战

    摘要:本文尝试基于分析现有的学术文章,剖析Serverless与Regionless并存时,在性能提升和成本控制两个方向的现状与挑战 本文分享自华为云社区《当Serverless遇到Regionless:现状与挑战》,作者:云容器大未来。 近年来,Serverless服务崛起的趋势是有目共睹的:从Berkeley将Serverless认定为云计算向用户呈现的…

    云计算 2023年5月8日
    00
  • 掌握动态规划,从“什么问题适合用”及“解题思路”入手

    摘要:一般是用动态规划来解决最优问题。 本文分享自华为云社区《深入浅出动态规划算法(中)》,作者:嵌入式视觉 。 一,“一个模型三个特征”理论讲解 一个模型指的是适合用动态规划算法解决的问题的模型,这个模型也被定义为“多阶段决策最优解模型”。具体解释如下: 一般是用动态规划来解决最优问题。而解决问题的过程,需要经历多个决策阶段。每个决策阶段都对应着一组状态。…

    人工智能概论 2023年4月24日
    00
  • GaussDB(DWS)网络流控与管控效果

    摘要:本文主要介绍GaussDB(DWS)网络流控能力,并对其管控效果进行验证。 本文分享自华为云社区《GaussDB(DWS)网络流控与管控效果》,作者:门前一棵葡萄树。 上一篇博文GaussDB(DWS)网络调度与隔离管控能力,我们详细介绍了GaussDB网络调度逻辑,并简单介绍了如何应用网络隔离管控能力。本篇博文主要介绍GaussDB(DWS)网络流控…

    MySQL 2023年5月5日
    00
  • 跟我学Python图像处理丨何为图像的灰度非线性变换

    摘要:本文主要讲解灰度线性变换,基础性知识希望对您有所帮助。 本文分享自华为云社区《[Python图像处理] 十六.图像的灰度非线性变换之对数变换、伽马变换》,作者:eastmount 。 本篇文章主要讲解非线性变换,使用自定义方法对图像进行灰度化处理,包括对数变换和伽马变换。 一.图像灰度非线性变换 图像的灰度非线性变换主要包括对数变换、幂次变换、指数变换…

    2023年4月2日
    00
  • 企业应用可观测性利器!华为云CodeArts APM发布

    摘要:近日,华为云全链路应用性能管理服务CodeArts APM全新上线,提供端到端的全链路性能管理服务,涵盖前端监控、应用性能监控,全面拥抱开源生态。 本文分享自华为云社区《企业应用可观测性利器!华为云CodeArts APM发布》,作者:华为云头条。 当前,企业数字化转型和业务互联网化逐渐加深,企业对应用的高可用、可靠性提出了更高的要求。随着企业快速引入…

    云计算 2023年4月17日
    00
合作推广
合作推广
分享本页
返回顶部