Conclusion:
- Mask 是创造了一个 mask 矩阵,随着每一层的结果 tensor 一起逐层传递,如果之后某一层不能接受 mask 矩阵则会报错
- Embedding, mask_zero 有效
- Concatenate, Dense 层之前可以有 Masking 层, 虽然从 tensor output 输出来看似乎 mask 矩阵没有作用,但是相应 mask 矩阵会继续向下传递,影响后边的层
- Mask 主要作用于 RNN 层,会忽略掉相应的 timestep,在 tensor output 的表现为:被 mask 的 timestep 结果为 0 或者与之前时间步结果相同
- Concatenate 之前如果 一个输入矩阵的某个 timestep 被 mask 了,整个输出矩阵的那个 timestep 都会被 mask
- 不要重复调用 Masking 层,因为会重新定义 mask 矩阵。尤其是在 Embedding 层后 mask 的 timestep 并不为 0,会使 mask_value 不全部匹配
Experimental:
模型部分代码 (用无序编号代替缩进):
def rnn_model(x_train, y_train):
# Inputs
num = Input(shape=(x_train[0].shape[1], x_train[0].shape[2]))
version = Input(shape=(x_train[1].shape[1], x_train[1].shape[2]))
missing = Input(shape=(x_train[2].shape[1], x_train[2].shape[2]))
inputs = [num, version, missing]
# Embedding for categorical variables
reshape_version = Reshape(target_shape=(-1,))(version)
embedding_version = Embedding(180, 2, input_length=x_train[1].shape[1] * x_train[1].shape[2], mask_zero=True, name='M_version')(reshape_version)
reshape_missing = Reshape(target_shape=(-1,))(missing)
embedding_missing = Embedding(4, 1, input_length=x_train[1].shape[1] * x_train[1].shape[2], mask_zero=True, name='M_missing')(reshape_missing)
num = Masking(mask_value=0, name='M_num')(num)
# # # concatenate layer
merge_ft = concatenate([num, embedding_version, embedding_missing], axis=-1, name='concate')
# GRU with various length
'''
Do not use anymore mask layer, as a new layer will overwrite the mask tensor.
As long as part of the timestep is masked, then the whole timestep is masked and won't be calculated
'''
# merge_ft = Dense(3, name='test')(merge_ft)
gru_1 = GRU(3, return_sequences=True, name='gru_1')(merge_ft)
gru_2 = GRU(3, return_sequences=True, name='gru_2')(gru_1)
gru_3 = GRU(3, name='gru_3')(gru_2)
dense_ft = Dense(2, name='dense_ft')(gru_3)
outputs = Lambda(lambda x: K.tf.nn.softmax(x), name='outputs')(dense_ft)
model = Model(inputs=inputs, outputs=outputs)
adam = Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=1e-6)
model.compile(loss='categorical_crossentropy', optimizer=adam)
return model
测试部分代码
if __name__ == '__main__':
# for test mask
# fake num with size 1*5*3
num = [[[0,0,0],[1,2,3],[0,0,0],[1,2,3],[0,0,0]]]
num = np.array(num)
c1 = [[[0],[1],[0],[1],[0]]]
c1 = np.array(c1)
c2 = [[[0],[1],[0],[1],[0]]]
c2 = np.array(c2)
y = [[0, 1]]
y = np.array(y)
x = [num, c1, c2]
model = rnn_model(x, y)
layer_name = 'gru_1'
intermediate_model = Model(inputs = model.input, outputs = model.get_layer(layer_name).output)
print intermediate_model.predict(x)
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Keras Mask 实验总结 (原创) - Python技术站