参考链接:https://blog.csdn.net/u013733326/article/details/80086090
大致了解卷积神经网络的实现细节,具体实现的时候直接调用相关库函数就行
# coding=utf-8 # This is a sample Python script. # Press ⌃R to execute it or replace it with your code. # Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings. import inline as inline import matplotlib import numpy as np import h5py import matplotlib.pyplot as plt # %matplotlib inline plt.rcParams['figure.figsize'] = (5.0, 4.0) plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' #ipython很好用,但是如果在ipython里已经import过的模块修改后需要重新reload就需要这样 #在执行用户代码前,重新装入软件的扩展和模块。 # %load_ext autoreload #autoreload 2:装入所有 %aimport 不包含的模块。 # %autoreload 2 np.random.seed(1) #指定随机种子 # Press the green button in the gutter to run the script. x = [[1, 2], [3, 4]] def zero_pad(x, pad): x_paded = np.pad(x, ((0, 0), (pad, pad), (pad, pad), (0, 0)), 'constant', constant_values=0) return x_paded def conv_songle_step(a_slice_prev, W, b): s = np.multiply(a_slice_prev, W) + b Z = np.sum(s) return Z def conv_forward(A_prev, W, b, hparameters): #前一层的输入 (m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape #权重矩阵,前2维是过滤器的维数,对每个不同的图像有不同的过滤器,是第三维,最后是本层过滤器的数目。 (f, f, n_C_prev, n_C) = W.shape #过滤器步长 stride = hparameters["stride"] pad = hparameters["pad"] n_H = int((n_H_prev - f + 2 * pad) / stride) + 1 n_W = int((n_W_prev - f + 2 * pad) / stride) + 1 Z = np.zeros((m, n_H, n_W, n_C)) A_prev_pad = zero_pad(A_prev, pad) for i in range(m): a_prev_pad = A_prev_pad[i]#选择第i张图像 for h in range(n_H): for w in range(n_W): for c in range(n_C): vert_start = h * stride vert_end = vert_start + f horiz_start = w * stride horiz_end = horiz_start + f a_slice_prev = a_prev_pad[vert_start:vert_end, horiz_start:horiz_end] #单步卷积 Z[i, h, w, c] = conv_songle_step(a_slice_prev, W[:, :, :, c], b[0, 0, 0, c]) assert Z.shape == (m, n_H, n_W, n_C) cache = A_prev, W, b, hparameters return Z, cache def pool_forward(A_prev, hparameters, mode = "max"): (m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape f = hparameters["f"] stride = hparameters["stride"] n_H = int((n_H_prev - f) / stride) + 1 n_W = int((n_H_prev - f) / stride) + 1 n_C = n_C_prev A = np.zeros((m, n_H, n_W, n_C)) for i in range(m): for h in range(n_H): for w in range(n_W): for c in range(n_C): vert_start = h * stride vert_end = vert_start + f horiz_start = w * stride horiz_end = horiz_start + w a_slice_prev = A_prev[i, vert_start:vert_end, horiz_start:horiz_end, c] if mode == "max": A[i, h, w, c] = np.max(a_slice_prev) elif mode == "average": A[i, h, w, c] = np.mean(a_slice_prev) assert A.shape == (m, n_H, n_W, n_C) cache = (A_prev, hparameters) return A, cache def conv_backward(dZ, cache): (A_prev, W, b, hparameters) = cache (m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape (m, n_H, n_W, n_C) = dZ.shape (f, f, n_C_prev, n_C) = W.shape pad = hparameters["pad"] stride = hparameters["stride"] dA_prev = np.zeros((m, n_H_prev, n_W_prev, n_C_prev)) dW = np.zeros((f, f, n_C_prev, n_C)) db = np.zeros((1, 1, 1, n_C)) A_prev_pad = zero_pad(A_prev, pad) dA_prev_pad = zero_pad(dA_prev, pad) for i in range(m): a_prev_pad = A_prev_pad[i] dA_prev_pad = dA_prev_pad[i] for h in range(n_H): for w in range(n_W): for c in range(n_C): vert_start = h vert_end = h + f horize_start = w horize_end = w + f a_slice = a_prev_pad[vert_start:vert_end, horize_start, horize_end] dA_prev_pad[vert_start:vert_end, horize_start, horize_end] += W[:, :, :, c] * dZ[i, h, w, c] dW[:, :, :, c] += a_slice * dZ[i, h, w, c] db[:, :, :, c] += dZ[i, h, w, c] dA_prev[i, :, :, :] = dA_prev_pad[pad:-pad, pad:-pad, :] def create_mask_from_window(x): mask = x == np.max(x) return mask def distribute_value(dz, shape): (n_H, n_W) = shape average = dz / (n_H * n_W) a = np.ones(shape) * average return a def pool_backward(dA, cache, mode = "max"): (A_prev, hparameters) = cache f = hparameters["f"] stride = hparameters["stride"] (m, n_H_prev, n_W_prev, n_C_prev) = A_prev.shape (m, n_H, n_W, n_C) = dA.shape dA_prev = np.zeros_like(A_prev) for i in range(m): a_prev = A_prev[i] for h in range(n_H): for w in range(n_W): for c in range(n_C): vert_start = h vert_end = vert_start + f horiz_start = w hpriz_end = horiz_start + f if mode == "max": a_prev_slice = a_prev[vert_start:vert_end, horiz_start:hpriz_end] mask = create_mask_from_window(a_prev_slice) dA_prev[i, vert_start:vert_end, horiz_start:hpriz_end, c] += np.multiply(mask, dA[i, h, w, c]) elif mode == "average": da = dA[i, h, w, c] shape = (f, f) dA_prev[i, vert_start:vert_end, horiz_start:hpriz_end, c] += distribute_value(da, shape) assert dA_prev.shape == A_prev.shape return dA_prev if __name__ == '__main__': # See PyCharm help at https://www.jetbrains.com/help/pycharm/
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:吴恩达《深度学习》第四课第一周编程作业 - Python技术站