使用SQLAlchemy将SQL数据库表读入Pandas DataFrame中

使用SQLAlchemy将SQL数据库表读入Pandas DataFrame中主要分为以下三个步骤:

  1. 连接数据库

使用SQLAlchemy与数据库建立连接,获取数据库引擎。以MySQL为例,需要安装PyMySQL模块并进行相应的配置。代码示例如下:

import sqlalchemy
from sqlalchemy import create_engine

user = 'root'
password = '123456'
host = 'localhost'
port = 3306
database = 'test'

engine = create_engine(f'mysql+pymysql://{user}:{password}@{host}:{port}/{database}')

其中,create_engine()函数中的地址格式可根据不同数据库进行修改。

  1. 读取数据

通过read_sql()方法读取数据,并将数据转换为DataFrame对象。例如,读取student表中的所有记录,代码示例如下:

import pandas as pd

query = 'select * from student'
df = pd.read_sql(query, engine)
  1. 数据处理

根据需求对数据进行相应的处理。例如,对读取后的DataFrame对象进行排序。代码示例如下:

df.sort_values(by='name', inplace=True)

完整示例代码如下:

import sqlalchemy
from sqlalchemy import create_engine
import pandas as pd

user = 'root'
password = '123456'
host = 'localhost'
port = 3306
database = 'test'

engine = create_engine(f'mysql+pymysql://{user}:{password}@{host}:{port}/{database}')

query = 'select * from student'
df = pd.read_sql(query, engine)

df.sort_values(by='name', inplace=True)
print(df)

以上即为使用SQLAlchemy将SQL数据库表读入Pandas DataFrame的详细讲解。

阅读剩余 19%

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:使用SQLAlchemy将SQL数据库表读入Pandas DataFrame中 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • C#实现Excel动态生成PivotTable

    C#实现Excel动态生成PivotTable的完整攻略 动态生成PivotTable,其实就是利用C#程序将数据导入Excel表格中的PivotTable,并且使得PivotTable自动更新,并支持动态增加或删除数据。下面就是实现这个功能的完整攻略: 1. 创建Excel文件并设置PivotTable数据源 首先,需要在C#中安装对Excel操作的支持,…

    python 2023年6月14日
    00
  • 从Dict列表中创建一个Pandas数据框架

    要从Dict(字典)列表中创建Pandas数据框架,可以按照以下步骤进行操作: 导入Pandas库 在Python中使用Pandas库需要先导入该库,可以通过以下代码实现: import pandas as pd 创建字典列表 为了创建Pandas数据框架,我们需要先创建一个包含数据的字典列表。这个列表中的每个字典代表一行数据,字典的键是数据框架中的列名,键…

    python-answer 2023年3月27日
    00
  • 使用Regex从给定的Pandas DataFrame的指定列中提取日期

    首先,我们需要安装Python中的正则表达式库re。在命令行或者jupyter notebook中输入以下命令进行安装: !pip install re 接下来,我们需要对DataFrame中的日期列进行正则匹配并提取出日期。 假设我们有以下DataFrame: import pandas as pd data = {‘日期’: [‘2022/05/01 1…

    python-answer 2023年3月27日
    00
  • pandas处理csv文件的方法步骤

    下面是pandas处理csv文件的方法步骤的完整攻略: 步骤1:导入pandas库 在使用pandas处理csv文件前,需要先导入pandas库,方法如下: import pandas as pd 其中,“pd”是pandas的惯常简写,遵循这个简写可以让我们的代码更加简洁明了。 步骤2:读取CSV文件 接下来需要读取CSV文件,pandas提供了一些方便易…

    python 2023年5月14日
    00
  • 从Pandas的约会中获得一天的时间

    获取Pandas的约会数据集中的日期信息,可以通过以下几个步骤实现: 步骤1:导入Pandas和读取数据 import pandas as pd data = pd.read_csv(‘dating.csv’) 在这里,我们首先导入Pandas包,并读取数据集。 步骤2:将日期列转换为datetime格式 data[‘date’] = pd.to_datet…

    python-answer 2023年3月27日
    00
  • 如何用Pandas读取JSON文件

    当需要处理JSON格式数据时,Pandas是一个非常好的选择。Pandas具有方便的读取JSON数据的函数,可以轻松的将JSON数据转换为Pandas的数据结构。 下面是使用Pandas读取JSON文件的完整攻略,包括从JSON文件中读取数据,转换数据成DataFrame等主要步骤: 1. 安装Pandas 在开始使用Pandas之前,需要先安装Pandas…

    python-answer 2023年3月27日
    00
  • 获取指定的Pandas数据框架的行值

    要获取指定的Pandas数据框架的行值,可以使用 loc 或 iloc 函数。loc 函数是根据行标签和列标签进行访问,而 iloc 函数是根据行索引和列索引进行访问。 具体步骤如下: 导入 Pandas 包 import pandas as pd 创建一个 Pandas 数据框架 df = pd.DataFrame({‘name’: [‘Alice’, ‘…

    python-answer 2023年3月27日
    00
  • 如何在Python中打印没有索引的Dataframe

    为了打印没有索引的Dataframe,我们需要首先禁用Dataframe的索引列。可以通过在Dataframe上使用reset_index方法将索引列重置为默认的数字索引,并将其存储在一个新变量中,如下所示: import pandas as pd # 创建没有索引的Dataframe df = pd.DataFrame({‘A’: [1, 2, 3], ‘…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部