使用SQLAlchemy将SQL数据库表读入Pandas DataFrame中

使用SQLAlchemy将SQL数据库表读入Pandas DataFrame中主要分为以下三个步骤:

  1. 连接数据库

使用SQLAlchemy与数据库建立连接,获取数据库引擎。以MySQL为例,需要安装PyMySQL模块并进行相应的配置。代码示例如下:

import sqlalchemy
from sqlalchemy import create_engine

user = 'root'
password = '123456'
host = 'localhost'
port = 3306
database = 'test'

engine = create_engine(f'mysql+pymysql://{user}:{password}@{host}:{port}/{database}')

其中,create_engine()函数中的地址格式可根据不同数据库进行修改。

  1. 读取数据

通过read_sql()方法读取数据,并将数据转换为DataFrame对象。例如,读取student表中的所有记录,代码示例如下:

import pandas as pd

query = 'select * from student'
df = pd.read_sql(query, engine)
  1. 数据处理

根据需求对数据进行相应的处理。例如,对读取后的DataFrame对象进行排序。代码示例如下:

df.sort_values(by='name', inplace=True)

完整示例代码如下:

import sqlalchemy
from sqlalchemy import create_engine
import pandas as pd

user = 'root'
password = '123456'
host = 'localhost'
port = 3306
database = 'test'

engine = create_engine(f'mysql+pymysql://{user}:{password}@{host}:{port}/{database}')

query = 'select * from student'
df = pd.read_sql(query, engine)

df.sort_values(by='name', inplace=True)
print(df)

以上即为使用SQLAlchemy将SQL数据库表读入Pandas DataFrame的详细讲解。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:使用SQLAlchemy将SQL数据库表读入Pandas DataFrame中 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • Pandas如何对Categorical类型字段数据统计实战案例

    Pandas是Python中一个功能强大的数据分析库,其中对于Categorical类型字段的数据统计也提供了非常便利的支持。下面我们将详细讲解如何使用Pandas进行Categorical类型字段的数据统计,包括以下内容: Categorical类型字段的基本介绍 Categorical类型字段的创建和转换 Categorical类型字段的数据统计 案例分…

    python 2023年5月14日
    00
  • Pandas中Apply函数加速百倍的技巧分享

    下面我将为您详细讲解“Pandas中Apply函数加速百倍的技巧分享”的完整攻略。 初识Pandas Apply Pandas中的apply()函数是一个非常实用的函数,它可用于在Pandas中的Series或DataFrame中执行一些函数操作。apply()函数有多种版本,包括apply(),applymap()和map()函数。其中,apply()函数…

    python 2023年5月14日
    00
  • Pandas.DataFrame时间序列数据处理的实现

    当我们处理时间序列数据时,Pandas.DataFrame是一个非常方便实用的工具。在实现时间序列数据处理时,应遵循以下步骤: 1. 读取数据 读取数据是使用Pandas.DataFrame的第一步。可以通过多种方式读取数据,如csv、txt、Excel等。下面是读取CSV文件的示例代码: import pandas as pd df = pd.read_c…

    python 2023年5月14日
    00
  • python如何导入自己的模块

    当我们想要在Python中使用自己定义的模块时,需要进行导入操作。下面详细介绍Python如何导入自己的模块。 1. 自定义模块文件的结构 在编写自定义模块之前,需要确认文件结构。Python模块可以是一个包含Python方法的.py文件。常见的模块结构如下: project/ ├── main.py └── mymodule/ ├── __init__.p…

    python 2023年5月14日
    00
  • 基于DATAFRAME中元素的读取与修改方法

    这里是“基于DATAFRAME中元素的读取与修改方法”的完整攻略: DATAFRAME 简介 在开始介绍 “基于DATAFRAME中元素的读取与修改方法” 前,我们需要首先了解一下 DATAFRAME。 DATAFRAME 是 PANDAS 中非常重要的数据结构之一,类似于 Excel 中的表格。一个 DataFrame 包括行和列,而每一行中的每一个元素都…

    python 2023年5月14日
    00
  • 详解pandas中缺失数据处理的函数

    详解pandas中缺失数据处理的函数 pandas中的缺失数据 在数据处理中,常常会出现数据缺失的情况,例如采集数据时未能获取完整的数据、数据传输中遭受意外中断等。在pandas中,一般使用NaN表示缺失数据。 处理缺失数据的常用函数 1. isnull() isnull()函数用于判断数据是否为缺失值,返回一个布尔型的结果。 示例: import pand…

    python 2023年5月14日
    00
  • 解决一个pandas执行模糊查询sql的坑

    当使用Pandas进行SQL查询时,我们可能会遇到Pandas执行模糊查询SQL的坑。具体来说,Pandas使用“like”模糊查询时,使用%通配符,并添加引号时会出现报错的情况。下面是解决这个问题的完整攻略: 1. 背景分析 当我们要在Pandas中使用“like”模糊查询时,可以使用以下格式: df[df[‘column’].str.contains(‘…

    python 2023年5月14日
    00
  • Pandas – 从多列中寻找唯一值

    当我们处理数据时可能需要在多列中查找某个唯一值,这时候就可以使用 Pandas 来完成这个任务。 假设我们有以下数据集,包含多个人的姓名、年龄、性别和职业: 名字 年龄 性别 职业 Tom 22 男 程序员 Alice 25 女 产品经理 Bob 28 男 销售 Tom 30 男 产品经理 Alice 24 女 销售 我们想要知道每位人员的职业是唯一的还是存…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部