accuracy=(1+3)/(1+2+3+4),即在所有样本(例子)中做出正确预测的的比例,或者说正确预测的样本数占总预测样本数的比值。
precision=(1)/(1+2),指的是正确预测的正样本数占所有预测为正样本的数量的比值,也就是说所有预测为正样本的样本中有多少是真正的正样本。从这我们可以看出,accuracy考虑全部样本,而precision只关注预测为正样本的部分。
recall=(1)/(1+4),正确预测的正样本数占真实正样本总数的比值,也就是我能从这些样本中能够正确找出多少个正样本。
F_score=2/(1/precision+1/recall),相当于precision和recall的调和平均,用意是要参考两个指标。从公式我们可以看出,recall和precision任何一个数值减小,F-score都会减小,反之,亦然。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:深度学习accuracy - Python技术站