AdvGAN
论文地址:https://arxiv.org/abs/1801.02610
论文的内容:采用GAN的方式来生成对抗样本
啥是对抗样本
对抗样本:adversarial examples
就是在真实样本的基础上加上一点点扰动,通常人眼无法察觉,但机器学习分类算法却会误判为其他类别~~
eg:大熊猫 + 很小的扰动量 ----结果判决成了长臂猿
最右边的图就是对抗样本。人眼看上去还是大熊猫,但是机器学习算法却分类错误。
数学描述
其中 是真实样本,其类别是.是一个已经训练好的分类器网络。就是对抗样本。最小化扰动量(两者的差异),使得分类器判决错误。
分类:
根据对抗样本的输出是否确定了类别:
- 有目标对抗—指定
- 无目标对抗—只要分类错误就行
根据对攻击网络的先验知识已知多少:
- 白盒对抗—需要知道网络的损失函数、梯度等
- 黑盒对抗—不需要网络内部知识
传统的对抗样本生成方法
大致分类:
- 基于梯度的方法
代表论文:
[1] Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples. ICLR 2015
[2] Kurakin A, Goodfellow I, Bengio S. Adversarial examples in the physical world. ICLR 2017
基本思路:把扰动加在梯度增加的方向,使得模型误判 - 基于优化的方法
代表论文:
[3] Szegedy C, Zaremba W, Sutskever I, et al. Intriguing properties of neural networks
[4] Nicholas Carlini, David Wagner. Towards evaluating the robustness of neural networks. 2017 IEEE Symposium on Security and Privacy (SP)
基本思路:求解优化问题,用各种变化方法使得优化问题好求解
缺点:
梯度方法快,但是不能保证对抗攻击有效
优化方法慢,一次只能对一个样本来优化
用GAN来生成对抗样本
推荐这篇blog来了解GAN,讲的非常好
https://blog.csdn.net/baidu_41867252/article/details/90369304
GAN是一种生成算法,目前在样本增强上有很多应用。
基本思路很简单:用噪声作为输入,送给生成器G,产生了虚假样本。(怎样使得虚假样本和真实样本很像呢,传统的方法可能是最小化二者之间的某种差别。)这里引入一个新的判决器网络D。G和D都是需要训练的,采用博弈的方法来交替训练二者,使得G不断强大,最后能够隐式的学习到真实样本的分布,从而产生和真实样本非常接近的样本。
为什么在图像生成中用GAN?
传统方法让真实图像和生成图像在像素级别上误差最小,实际上两个图像差一些像素对于整体而言没什么大影响,GAN是保证了整图级别上的相似。
eg:MNIST数据集中的2,如果拖尾写的长一点,仍然是个2,像素上差别是有的,但是不影响它是个2
回到对抗样本生成
用GAN来生成对抗样本,其实就是在原来GAN结构上增加了一个分类器网络
原来的GAN网络:用于生成对抗样本,使得对抗样本和真实图像非常像(保证对抗样本和真实样本在视觉上无差别)
新增加的网络:就是要攻击的分类器网络,用于判断生成的样本是否能够有效攻击,把损失函数传递给G和D用于训练。
结构图就是这样:
和原始的GAN有两个差别
1是增加了分类器网络
2是原来的GAN的生成G的输入是噪声,输出图像
这里用原始样本作为输入,生成的是扰动量,生成的对抗样本
训练使用如下损失函数
其中是权重
是对抗样本在分类器上的损失函数,定义为
其中是目标分类标签,就是上面的,希望对抗样本能够被分类为,就是在训练分类器网络时候采用的loss,(例如交叉熵损失函数)。
可见在训练G的时候,还是需要的损失函数信息,不过论文指出,当训练好了之后,就可以利用来生成对抗样本了,生成的时候就不需要的信息了,因此相比于原来的白盒攻击,这是一种半白盒攻击(semi-white box attack)
而且生成时候可以大批量的生成样本哦,速度很快的哦~~~
还有一个loss是,其中G(x)就是扰动量,这是为了约束扰动量的范数不要超过一个给定的上限。
用这个网络来训练G和D,达到均衡时候,把G拿出来用就可以啦!
黑盒攻击
传统的黑盒攻击方法依赖于模型的迁移特性,一般是先训练一个local模型,(其实是替代模型),然后根据local模型来生成对抗样本,希望这些对抗样本在真的黑盒模型上依然有效。
本文提出的方法不需要依赖迁移特性
-
静态蒸馏 Static Distillation
对于未知的黑盒模型b,训练一个蒸馏网络f
需要随机的访问一些模型的输入和输出
其中,是交叉熵,希望输入x之后,f网络和b网络的输出之间的交叉熵最小,以此来训练f。 -
动态蒸馏 Dynamic Distillation
静态方法的缺点:对抗样本在训练集合中未出现过,只是在预测阶段才有的。所以不清楚在对抗样本集合上面f和b究竟有多接近??(不是很理解这个)
解决方法:动态的访问,联合训练f和G
算法描述:
迭代:
- 固定来更新
- 固定来更新
先用来初始化;
然后用来生成对抗样本
基于新的访问结果来更新: (同时用原图和对抗样本来更新f)
以上是初步理解 欢迎一起来探讨~~~~????????
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Generating Adversarial Examples with Adversarial Networks 采用GAN的方法来生成对抗样本 - Python技术站