过拟合、欠拟合及其解决方案

  1. 过拟合、欠拟合的概念
  2. 权重衰减
  3. 丢弃法

模型选择、过拟合和欠拟合

训练误差和泛化误差

在解释上述现象之前,我们需要区分训练误差(training error)和泛化误差(generalization error)。通俗来讲,前者指模型在训练数据集上表现出的误差,后者指模型在任意一个测试数据样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似。计算训练误差和泛化误差可以使用之前介绍过的损失函数,例如线性回归用到的平方损失函数和softmax回归用到的交叉熵损失函数。

机器学习模型应关注降低泛化误差。

模型选择

验证数据集

从严格意义上讲,测试集只能在所有超参数和模型参数选定后使用一次。不可以使用测试数据选择模型,如调参。由于无法从训练误差估计泛化误差,因此也不应只依赖训练数据选择模型。鉴于此,我们可以预留一部分在训练数据集和测试数据集以外的数据来进行模型选择。这部分数据被称为验证数据集,简称验证集(validation set)。例如,我们可以从给定的训练集中随机选取一小部分作为验证集,而将剩余部分作为真正的训练集。

K折交叉验证

由于验证数据集不参与模型训练,当训练数据不够用时,预留大量的验证数据显得太奢侈。一种改善的方法是K折交叉验证(K-fold cross-validation)。在K折交叉验证中,我们把原始训练数据集分割成K个不重合的子数据集,然后我们做K次模型训练和验证。每一次,我们使用一个子数据集验证模型,并使用其他K-1个子数据集来训练模型。在这K次训练和验证中,每次用来验证模型的子数据集都不同。最后,我们对这K次训练误差和验证误差分别求平均。

过拟合和欠拟合

接下来,我们将探究模型训练中经常出现的两类典型问题:

  • 一类是模型无法得到较低的训练误差,我们将这一现象称作欠拟合(underfitting);
  • 另一类是模型的训练误差远小于它在测试数据集上的误差,我们称该现象为过拟合(overfitting)。 在实践中,我们要尽可能同时应对欠拟合和过拟合。虽然有很多因素可能导致这两种拟合问题,在这里我们重点讨论两个因素:模型复杂度和训练数据集大小。

模型复杂度

为了解释模型复杂度,我们以多项式函数拟合为例。给定一个由标量数据特征x和对应的标量标签y组成的训练数据集,多项式函数拟合的目标是找一个K阶多项式函数

y^=b+∑k=1Kxkwk

来近似 y。在上式中,wk是模型的权重参数,b是偏差参数。与线性回归相同,多项式函数拟合也使用平方损失函数。特别地,一阶多项式函数拟合又叫线性函数拟合。

给定训练数据集,模型复杂度和误差之间的关系:

《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

训练数据集大小

影响欠拟合和过拟合的另一个重要因素是训练数据集的大小。一般来说,如果训练数据集中样本数过少,特别是比模型参数数量(按元素计)更少时,过拟合更容易发生。此外,泛化误差不会随训练数据集里样本数量增加而增大。因此,在计算资源允许的范围之内,我们通常希望训练数据集大一些,特别是在模型复杂度较高时,例如层数较多的深度学习模型。

 

梯度消失、梯度爆炸以及Kaggle房价预测

  1. 梯度消失和梯度爆炸
  2. 考虑到环境因素的其他问题
  3. Kaggle房价预测

梯度消失和梯度爆炸

深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion)。

当神经网络的层数较多时,模型的数值稳定性容易变差。

假设一个层数为L的多层感知机的第l层H(l)的权重参数为W(l),输出层H(L)的权重参数为W(L)。为了便于讨论,不考虑偏差参数,且设所有隐藏层的**函数为恒等映射(identity mapping)ϕ(x)=x。给定输入X,多层感知机的第l层的输出H(l)=XW(1)W(2)…W(l)。此时,如果层数l较大,H(l)的计算可能会出现衰减或爆炸。举个例子,假设输入和所有层的权重参数都是标量,如权重参数为0.2和5,多层感知机的第30层输出为输入X分别与0.230≈1×10−21(消失)和530≈9×1020(爆炸)的乘积。当层数较多时,梯度的计算也容易出现消失或爆炸。

随机初始化模型参数

在神经网络中,通常需要随机初始化模型参数。下面我们来解释这样做的原因。

回顾多层感知机一节描述的多层感知机。为了方便解释,假设输出层只保留一个输出单元o1(删去o2和o3以及指向它们的箭头),且隐藏层使用相同的**函数。如果将每个隐藏单元的参数都初始化为相等的值,那么在正向传播时每个隐藏单元将根据相同的输入计算出相同的值,并传递至输出层。在反向传播中,每个隐藏单元的参数梯度值相等。因此,这些参数在使用基于梯度的优化算法迭代后值依然相等。之后的迭代也是如此。在这种情况下,无论隐藏单元有多少,隐藏层本质上只有1个隐藏单元在发挥作用。因此,正如在前面的实验中所做的那样,我们通常将神经网络的模型参数,特别是权重参数,进行随机初始化。

《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

PyTorch的默认随机初始化

随机初始化模型参数的方法有很多。在线性回归的简洁实现中,我们使用torch.nn.init.normal_()使模型net的权重参数采用正态分布的随机初始化方式。不过,PyTorch中nn.Module的模块参数都采取了较为合理的初始化策略(不同类型的layer具体采样的哪一种初始化方法的可参考源代码),因此一般不用我们考虑。

Xavier随机初始化

还有一种比较常用的随机初始化方法叫作Xavier随机初始化。 假设某全连接层的输入个数为a,输出个数为b,Xavier随机初始化将使该层中权重参数的每个元素都随机采样于均匀分布

U(−6a+b,6a+b).

它的设计主要考虑到,模型参数初始化后,每层输出的方差不该受该层输入个数影响,且每层梯度的方差也不该受该层输出个数影响。

考虑环境因素

协变量偏移

这里我们假设,虽然输入的分布可能随时间而改变,但是标记函数,即条件分布P(y∣x)不会改变。虽然这个问题容易理解,但在实践中也容易忽视。

想想区分猫和狗的一个例子。我们的训练数据使用的是猫和狗的真实的照片,但是在测试时,我们被要求对猫和狗的卡通图片进行分类。

cat cat dog dog
《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

测试数据:

cat cat dog dog
《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶 《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
 

显然,这不太可能奏效。训练集由照片组成,而测试集只包含卡通。在一个看起来与测试集有着本质不同的数据集上进行训练,而不考虑如何适应新的情况,这是不是一个好主意。不幸的是,这是一个非常常见的陷阱。

统计学家称这种协变量变化是因为问题的根源在于特征分布的变化(即协变量的变化)。数学上,我们可以说P(x)改变了,但P(y∣x)保持不变。尽管它的有用性并不局限于此,当我们认为x导致y时,协变量移位通常是正确的假设。

标签偏移

当我们认为导致偏移的是标签P(y)上的边缘分布的变化,但类条件分布是不变的P(x∣y)时,就会出现相反的问题。当我们认为y导致x时,标签偏移是一个合理的假设。例如,通常我们希望根据其表现来预测诊断结果。在这种情况下,我们认为诊断引起的表现,即疾病引起的症状。有时标签偏移和协变量移位假设可以同时成立。例如,当真正的标签函数是确定的和不变的,那么协变量偏移将始终保持,包括如果标签偏移也保持。有趣的是,当我们期望标签偏移和协变量偏移保持时,使用来自标签偏移假设的方法通常是有利的。这是因为这些方法倾向于操作看起来像标签的对象,这(在深度学习中)与处理看起来像输入的对象(在深度学习中)相比相对容易一些。

病因(要预测的诊断结果)导致 症状(观察到的结果)。

训练数据集,数据很少只包含流感p(y)的样本。

而测试数据集有流感p(y)和流感q(y),其中不变的是流感症状p(x|y)。

概念偏移

另一个相关的问题出现在概念转换中,即标签本身的定义发生变化的情况。这听起来很奇怪,毕竟猫就是猫。的确,猫的定义可能不会改变,但我们能不能对软饮料也这么说呢?事实证明,如果我们周游美国,按地理位置转移数据来源,我们会发现,即使是如图所示的这个简单术语的定义也会发生相当大的概念转变。

《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

美国软饮料名称的概念转变美国软饮料名称的概念转变

如果我们要建立一个机器翻译系统,分布P(y∣x)可能因我们的位置而异。这个问题很难发现。另一个可取之处是P(y∣x)通常只是逐渐变化。

 

深度卷积神经网络(AlexNet)

LeNet: 在大的真实数据集上的表现并不尽如⼈意。
1.神经网络计算复杂。
2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。

机器学习的特征提取:手工定义的特征提取函数
神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。

神经网络发展的限制:数据、硬件

AlexNet

首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状。
特征:

  1. 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
  2. 将sigmoid**函数改成了更加简单的ReLU**函数。
  3. 用Dropout来控制全连接层的模型复杂度。
  4. 引入数据增强,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。

《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

使用重复元素的网络(VGG)

VGG:通过重复使⽤简单的基础块来构建深度模型。
Block:数个相同的填充为1、窗口形状为3×3的卷积层,接上一个步幅为2、窗口形状为2×2的最大池化层。
卷积层保持输入的高和宽不变,而池化层则对其减半。

《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

⽹络中的⽹络(NiN)

LeNet、AlexNet和VGG:先以由卷积层构成的模块充分抽取 空间特征,再以由全连接层构成的模块来输出分类结果。
NiN:串联多个由卷积层和“全连接”层构成的小⽹络来构建⼀个深层⽹络。
⽤了输出通道数等于标签类别数的NiN块,然后使⽤全局平均池化层对每个通道中所有元素求平均并直接⽤于分类。

《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

1×1卷积核作用
1.放缩通道数:通过控制卷积核的数量达到通道数的放缩。
2.增加非线性。1×1卷积核的卷积过程相当于全连接层的计算过程,并且还加入了非线性**函数,从而可以增加网络的非线性。
3.计算参数少

GoogLeNet

  1. 由Inception基础块组成。
  2. Inception块相当于⼀个有4条线路的⼦⽹络。它通过不同窗口形状的卷积层和最⼤池化层来并⾏抽取信息,并使⽤1×1卷积层减少通道数从而降低模型复杂度。
  3. 可以⾃定义的超参数是每个层的输出通道数,我们以此来控制模型复杂度。

《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

GoogLeNet模型

完整模型结构

《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

多层感知机

  1. 多层感知机的基本知识
  2. 使用多层感知机图像分类的从零开始的实现
  3. 使用pytorch的简洁实现

多层感知机的基本知识

深度学习主要关注多层模型。在这里,我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。

隐藏层

下图展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有5个隐藏单元。

《动手学深度学习》笔记 Task03 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶

表达公式

具体来说,给定一个小批量样本X∈Rn×d,其批量大小为n,输入个数为d。假设多层感知机只有一个隐藏层,其中隐藏单元个数为h。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为H,有H∈Rn×h。因为隐藏层和输出层均是全连接层,可以设隐藏层的权重参数和偏差参数分别为Wh∈Rd×h和 bh∈R1×h,输出层的权重和偏差参数分别为Wo∈Rh×q和bo∈R1×q。

我们先来看一种含单隐藏层的多层感知机的设计。其输出O∈Rn×q的计算为

H=XWh+bh,O=HWo+bo,

也就是将隐藏层的输出直接作为输出层的输入。如果将以上两个式子联立起来,可以得到

O=(XWh+bh)Wo+bo=XWhWo+bhWo+bo.

从联立后的式子可以看出,虽然神经网络引入了隐藏层,却依然等价于一个单层神经网络:其中输出层权重参数为WhWo,偏差参数为bhWo+bo。不难发现,即便再添加更多的隐藏层,以上设计依然只能与仅含输出层的单层神经网络等价。

**函数

上述问题的根源在于全连接层只是对数据做仿射变换(affine transformation),而多个仿射变换的叠加仍然是一个仿射变换。解决问题的一个方法是引入非线性变换,例如对隐藏变量使用按元素运算的非线性函数进行变换,然后再作为下一个全连接层的输入。这个非线性函数被称为**函数(activation function)。

下面我们介绍几个常用的**函数:

ReLU函数

ReLU(rectified linear unit)函数提供了一个很简单的非线性变换。给定元素x,该函数定义为

ReLU(x)=max(x,0).

可以看出,ReLU函数只保留正数元素,并将负数元素清零。为了直观地观察这一非线性变换,我们先定义一个绘图函数xyplot。