2023年7大数据清理工具!

2023年7大数据清理工具!

首先,让我先告诉您什么是数据清理。

检测和解决错误、不正确或不相关数据的过程称为数据清理。这个数据处理的关键阶段,也称为数据清理或数据清理,可以提高公司数据的一致性、可靠性和实用性。遗漏数字、错位条目和印刷错误都是常见的数据缺陷。

我们周围的数据量每天都在增加,出错的机会也在增加。随着来自众多来源的大量数据,数据清理解决方案对于确保数据质量、流程效率和提高公司的竞争优势比以往任何时候都更加重要。

因此,我们依靠数据清理来提高数据管理系统的效率。通过最大限度地减少不一致、消除错误并帮助企业做出正确、明智的决策,数据清理可以提高我们数据的质量和实用性。质量差的数据会给您的公司带来一系列问题。

您可能会因信息重复而产生高额成本,因地址不正确而损失收入,并提供糟糕的客户体验。由于大多数企业都依赖于数据,尤其是金融、保险、零售、电信等数据密集型行业,因此无差错的数据管理变得至关重要。

当更改或删除不准确、不完整、结构不良或重复的数据时,有必要清理或清理数据库中的数据。

手动筛选数十亿条记录既费时又容易出错,因此使用规则、算法和查找表系统地检查数据错误的数据清理解决方案正变得越来越普遍,即使在分析驱动的组织中也是如此。

数据清理包括:

  1. 摆脱不良评论。
  2. 整合数据结构
  3. 删除不需要的异常值并标准化您的数据
  4. 跨集数据校正错误
  5. 处理缺失的数据
  6. 类型转换和语法修正错误
  7. 验证您的信息

手动清洗数据既费时又低效,更不用说容易出错了。这些问题可以由数据清理技术解决,它可以帮助您并保持出色的数据质量。

事实上,没有所谓的“正确的”数据清理工具。需要根据企业的目标、问题和数据库大小,对其数据清理软件提出不同的功能要求。

顶级数据清理工具

OpenRefine

这个复杂的工具,以前称为 Google Refine,可用于处理脏数据、清理数据和更改数据。PenFine 是一个开源数据实用程序。与我们列表中的其他工具相比,它的主要优势在于它是免费使用和配置的,因为它是开源的。

OpenRefine 使您能够在多种格式之间转换数据,同时确保其结构良好。它也可用于解析来自互联网的数据。它有更多的关系数据库的感觉。这对于需要比基本 Excel 文件提供更多信息的数据分析师非常有用。

另一个显着优势是您可以在您的机器上处理数据,从而保证数据的绝对安全。如果您希望链接或扩展您的数据集,您可以将 OpenRefine 连接到外部在线服务和其他云资源。虽然它执行一系列复杂的任务来使用它,但您只需要一些技术知识。

Trifacta Wrangler

一种交互式的数据清理和转换工具。它可以帮助数据分析师更快、更正确地清理和准备不良数据。它是由 Data Wrangler 的创建者创建的用于数据清理和转换的交互式工具。

此应用程序的最佳特性之一是格式化所需的时间更少,并且更专注于数据分析。它的机器学习技术通过推荐常见的转换和聚合来协助数据准备。例如,它的AI 算法可以快速识别和消除异常值,以及自动化整体数据质量监控——这是持续数据清理的有用工具。

无需从一开始就创建数据管道,该工具的用户界面可以以更加直观和直接的方式进行创建。这也是免费软件。

Winpure

是目前最流行、性价比最高的数据清洗方案之一,对海量数据进行简单的清洗、去重、整改、归一化。这是一种内部部署技术,任何规模的公司都可以使用。其功能包括数据清洗、数据匹配、重复数据删除、地址验证和电子邮件验证。

根据您的需要和列表大小,该程序有几种不同的风格。除非您将数据集传输到云端,否则您不必担心数据安全,因为它是在本地安装的。这是专为清理公司和客户数据而开发 的Winpure的关键功能。

从 CSV 文件到 SQL Server、Salesforce 和 Oracle,Winpure Clean & Match 可以处理和清理范围广泛的数据库和电子表格。高级数据净化和模糊匹配是它的一些主要特征,极快的数据清理也是如此。此外,它还支持四种语言:德语、英语、葡萄牙语和西班牙语,从而提供多语言支持。

TIBCO Clarity

此数据清理解决方案通过 Web 为按需软件服务提供基于云的软件即服务 ( SaaS )。它允许用户通过去重和清理地址来验证数据,从而更容易看到趋势并做出更好的判断。

它可以对来自各种来源的原始数据进行标准化,从而生成用于可靠分析的高质量数据。它是一个功能丰富的数据清理应用程序,可以使用来自各种来源的数据,包括 XLS 和 JSON 文件、压缩文件以及大量在线数据仓库和存储库。

它还具有一些可有可无的功能,例如撤消转换的能力。许多工具都无法使用此功能,但如果您对所做的修改不满意,它会很有用。所有这些功能的唯一缺点是没有可用的免费版本。

Melissa Clean Suite

这是一个进行全面数据分析然后验证、标准化、更正和附加客户联系记录的程序。它可以与您的 ERP 或 CRM 营销系统(例如 Microsoft Dynamics、Oracle、Salesforce)结合使用。

重复数据删除、联系人自动完成、数据验证、数据丰富、不断更新的联系人、实时和批处理以及数据附加是 Melissa Clean Suite 中提供的一些功能。

它还带有许多内置的营销工具,不需要任何复杂的培训(这是一个好处!)。人口生成、数据定位和细分是这些服务的示例。Melissa Clean Suite 的主要优势在于它可以在收集数据时对其进行清理。

Melissa 从一般数据管理的角度提供了明显的节省时间的好处,同时针对与营销相关的数据任务。使用此工具没有什么是您无法完成的,因为它具有如此多的功能。

Data Ladder

Data Ladder 是一种经济的清理和数据质量工具,而 DataMatch Enterprise 提供了市场上最佳的匹配精度和速度之一,并结合了先进的模糊匹配算法,可处理多达 1 亿条记录。

这些用户友好的解决方案使任何规模或行业的组织都可以轻松管理其数据清理操作。它专注于消费者数据。然而,与其他人不同的是,它旨在解决已经处于不良状态的数据集中的数据质量问题。它利用一个演练界面来指导您从头到尾完成数据处理。

您可以手动设计匹配定义,以响应不同级别的精确度,具体取决于您想要的结果。它还包括一个有用的计划功能,允许您提前安排数据清理活动。

Drake

这种基于文本的数据工作流使用和扩展起来很直观,数据处理阶段及其输入和输出一起描述,它可以自动处理依赖关系并确定要运行的命令和应该完成的顺序。

它是在考虑数据工作流管理的情况下创建的,它围绕数据及其依赖关系构建命令执行。它可用于各种数据处理任务,并具有许多输入和输出。

结论

以下是分析师日常使用的一些数据清理技术。我们建议您研究其中的一些工具和其他工具,以继续扩展您的数据清理工具箱。通过提高数据质量,投入更少的时间和资源来处理重复记录、维护过多的记录以及处理不正确的数据。

推荐阅读:《10大顶级数据挖掘软件!》

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:2023年7大数据清理工具! - Python技术站

(0)
上一篇 2023年2月7日 下午10:34
下一篇 2023年2月7日 下午10:58

相关文章

  • 大数据技术都有哪些?

    大数据技术是什么? 大数据技术指的是一种结合了数据挖掘、数据存储、数据共享和数据可视化的应用软件,这个应用软件包括数据、数据框架,以及用于调查和转换数据的工具和技术。 现如今,大数据技术已与机器学习、深度学习、人工智能和物联网等大规模增强的其他技术紧密联系在一起。 大数据技术种类 大数据技术可以分为两大类: 1.运营大数据技术: 它表示每天互联网生成的大量数…

    2022年11月14日
    00
  • 信号处理中的常用技术有哪些?

    信号处理是数字信号处理中的一个重要领域,在处理信号时,常用技术有以下几种: 时域分析:时域分析是指将信号看作时间函数,在时间域内进行分析。其中最常用的技术是基于时域上对信号进行差分。差分的结果是导数或者是梯度。因此,在信号中寻找导数或梯度等特征是时域分析的基本技术。 频域分析:在频域中,我们将信号表示为振幅和相位随与时间呈现的正弦函数。频域分析的基本技术是傅…

    大数据 2023年4月19日
    00
  • 什么是数据挖掘?

    数据挖掘是一种从大量结构化和非结构化数据中自动或半自动地提取知识或信息的过程。它是一种分析数据的方法,用于发现数据集中隐藏的模式或关系,以及对这些模式或关系进行预测和分类。数据挖掘通常涉及多个步骤,包括数据清洗、数据集成、数据选择、数据变换、模式识别和模型评估。 以下是数据挖掘的完成攻略: 确定问题和目标:在开始数据挖掘之前,必须明确问题和目标。例如,我们可…

    大数据 2023年4月19日
    00
  • 数据分析中如何处理缺失值和异常值?

    在数据分析中,缺失值和异常值都是常见的问题,需要进行有效的处理才能得到准确的分析结果。 下面分别针对缺失值和异常值进行详细讲解。 处理缺失值 什么是缺失值 缺失值是指数据集中某些观测值没有收集到或者遗漏了。在不同的数据集中,缺失值可能表现为不同的形式,比如空值、NaN、-1等等。 缺失值的影响 在数据分析中,缺失值可能会对结果造成影响,导致结果不准确或者出现…

    大数据 2023年4月19日
    00
  • 什么是数据清洗?

    数据清洗是指从原始数据中去除不合理、不完整、不准确和不一致等“脏数据”,并对数据进行处理和加工,以保证数据质量达到特定要求的一系列操作。数据清洗是数据预处理的一部分,是数据挖掘、机器学习等应用中的重要步骤,可以对数据进行有效的分析、建模和应用。 完成数据清洗的攻略可以如下: 数据识别:查看数据,识别数据中存在的问题。可以通过可视化工具、数值计量统计等方法确定…

    大数据 2023年4月19日
    00
  • 机器学习中常用的算法有哪些?

    机器学习中常用的算法可以大致分为三大类:监督学习算法、无监督学习算法和半监督学习算法。 监督学习算法 监督学习算法是指在给定数据集的情况下,通过构建一个预测模型来预测新的未知数据集。监督学习算法可以分为以下几类: K最近邻算法(KNN) KNN算法是一种基于实例的学习方式,是最简单的分类算法之一。该算法的思想是在训练集中寻找一定数量的最大相似性数据点,然后利…

    大数据 2023年4月19日
    00
  • 信号处理的应用范围有哪些?

    信号处理是一种涉及信号采集、分析、传输和处理等多个领域的交叉学科,其应用范围涉及到多个行业和领域。以下是信号处理的应用范围及示例说明: 1. 通信系统 信号处理在通信系统中应用广泛。例如,信号处理在无线通信中用于频率分离和多路复用,以及在音频和视频通信中用于信号压缩和解压缩。信号处理技术还可以用于改善通信信号质量,例如通过消除噪声和调整信号功率来提高通信质量…

    大数据 2023年4月19日
    00
  • 如何评估数据模型的性能?

    评估一个数据模型的性能需要进行多方面的考量和分析。下面是评估数据模型性能的基本思路和步骤: 1. 定义目标 在评估数据模型性能之前,需要先明确评估的目标,例如: 优化查询性能 减少数据冗余 增加数据的完整性和一致性 只有清晰地定义了目标,才能够有针对性地进行评估和优化。 2. 观察数据分布 观察数据分布是评估数据模型性能的重要步骤。通过了解数据的分布情况,可…

    大数据 2023年4月19日
    00
  • 10大数据可视化技术!

    我们人类倾向于更多地被视觉效果所吸引,而不是枯燥的文字内容。您可能也遇到过这种情况,通过图表、图形等视觉效果展示出来的内容更容易理解。 正因如此,数据可视化便出场了。 数据可视化有什么作用? 数据可视化提供了一种快速、高效的方式,通过使用更广泛的视觉效果的方式来传达信息。它几乎可应用于所有行业,可以提高企业的销售额,并针对潜在客户的新市场和人口统计数据。 数…

    2023年2月7日 大数据
    20
  • 自然语言处理中的常用技术有哪些?

    自然语言处理(Natural Language Processing,NLP)是人工智能领域的一个重要分支,它主要研究如何让计算机理解人类自然语言,并能够用计算机程序去处理和分析语言数据。 在NLP领域中,常用的技术有很多,以下是比较常见的几项技术: 分词技术(Tokenization): 分词是NLP中的基础技术,它将一段自然语言文本中的单词或词条分成一个…

    大数据 2023年4月19日
    00

评论列表(1条)