官网链接:https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb 但是一直有问题,没有运行起来,所以先使用一个别人写好的代码
上一个在ubuntu下可用的代码链接:https://gitee.com/bubbleit/JianDanWuTiShiBie 使用python2运行,python3可能会有问题
该代码由https://gitee.com/talengu/JianDanWuTiShiBie/tree/master而来,经过我部分的调整与修改,代码包含在ODtest.py文件中,/ssd_mobilenet_v1_coco_11_06_2017中存储的是预训练模型
原始代码如下
import numpy as np from matplotlib import pyplot as plt import os import tensorflow as tf from PIL import Image from utils import label_map_util from utils import visualization_utils as vis_util import datetime # 关闭tensorflow警告 os.environ['TF_CPP_MIN_LOG_LEVEL']='3' detection_graph = tf.Graph() # 加载模型数据------------------------------------------------------------------------------------------------------- def loading(): with detection_graph.as_default(): od_graph_def = tf.GraphDef() PATH_TO_CKPT = 'ssd_mobilenet_v1_coco_11_06_2017' + '/frozen_inference_graph.pb' with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') return detection_graph # Detection检测------------------------------------------------------------------------------------------------------- def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) # List of the strings that is used to add correct label for each box. PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=90, use_display_name=True) category_index = label_map_util.create_category_index(categories) def Detection(image_path="images/image1.jpg"): loading() with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: # for image_path in TEST_IMAGE_PATHS: image = Image.open(image_path) # the array based representation of the image will be used later in order to prepare the # result image with boxes and labels on it. image_np = load_image_into_numpy_array(image) # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. scores = detection_graph.get_tensor_by_name('detection_scores:0') classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') # Actual detection. (boxes, scores, classes, num_detections) = sess.run( [boxes, scores, classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # Visualization of the results of a detection.将识别结果标记在图片上 vis_util.visualize_boxes_and_labels_on_image_array( image_np, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) # output result输出 for i in range(3): if classes[0][i] in category_index.keys(): class_name = category_index[classes[0][i]]['name'] else: class_name = 'N/A' print("物体:%s 概率:%s" % (class_name, scores[0][i])) # matplotlib输出图片 # Size, in inches, of the output images. IMAGE_SIZE = (20, 12) plt.figure(figsize=IMAGE_SIZE) plt.imshow(image_np) plt.show() # 运行 Detection()
View Code
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:tensorflow利用预训练模型进行目标检测(二):预训练模型的使用 - Python技术站