对于blob.h文件。

先看成员变量。定义了6个保护的成员变量,包括前、后向传播的数据,新、旧形状数据(?),

数据个数及容量。

再看成员函数。包括构造函数(4个参数),reshape(改变blob形状),以及很多inline函数。

 

 

#ifndef CAFFE_BLOB_HPP_
#define CAFFE_BLOB_HPP_

#include <algorithm>
#include <string>
#include <vector>

#include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/syncedmem.hpp"

const int kMaxBlobAxes = 32;

namespace caffe {

/**
 * @brief A wrapper around SyncedMemory holders serving as the basic
 *        computational unit through which Layer%s, Net%s, and Solver%s
 *        interact.
 *
 * TODO(dox): more thorough description.
 */
template <typename Dtype>
class Blob {
 public:
  Blob()
       : data_(), diff_(), count_(0), capacity_(0) {}

  /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
  explicit Blob(const int num, const int channels, const int height,
      const int width);//构造函数,explicit防止隐式转换
  explicit Blob(const vector<int>& shape);

  /// @brief Deprecated; use <code>Reshape(const vector<int>& shape)</code>.
  void Reshape(const int num, const int channels, const int height,
      const int width);
  /**
   * @brief Change the dimensions of the blob, allocating new memory if
   *        necessary.
   *
   * This function can be called both to create an initial allocation
   * of memory, and to adjust the dimensions of a top blob during Layer::Reshape
   * or Layer::Forward. When changing the size of blob, memory will only be
   * reallocated if sufficient memory does not already exist, and excess memory
   * will never be freed.
   *
   * Note that reshaping an input blob and immediately calling Net::Backward is
   * an error; either Net::Forward or Net::Reshape need to be called to
   * propagate the new input shape to higher layers.
   */
  void Reshape(const vector<int>& shape);
  void Reshape(const BlobShape& shape);
  void ReshapeLike(const Blob& other);
  //输出数据维度
  inline string shape_string() const {
    ostringstream stream;
    for (int i = 0; i < shape_.size(); ++i) {
      stream << shape_[i] << " ";
    }
    stream << "(" << count_ << ")";//数据个数
    return stream.str();
  }
  inline const vector<int>& shape() const { return shape_; }
  /**
   * @brief Returns the dimension of the index-th axis (or the negative index-th
   *        axis from the end, if index is negative).
   *
   * @param index the axis index, which may be negative as it will be
   *        "canonicalized" using CanonicalAxisIndex.
   *        Dies on out of range index.
   */
  inline int shape(int index) const {
    return shape_[CanonicalAxisIndex(index)];
  }
  inline int num_axes() const { return shape_.size(); }//返回维度

  inline int count() const { return count_; }

  /**
   * @brief Compute the volume of a slice; i.e., the product of dimensions
   *        among a range of axes.
   *
   * @param start_axis The first axis to include in the slice.
   *
   * @param end_axis The first axis to exclude from the slice.
   */
  inline int count(int start_axis, int end_axis) const {
    CHECK_LE(start_axis, end_axis);//判断维度的索引是否在范围内
    CHECK_GE(start_axis, 0);
    CHECK_GE(end_axis, 0);
    CHECK_LE(start_axis, num_axes());
    CHECK_LE(end_axis, num_axes());
    int count = 1;
    for (int i = start_axis; i < end_axis; ++i) {
      count *= shape(i);//数据的所有维度相乘,即数据的个数
    }
    return count;
  }
  /**
   * @brief Compute the volume of a slice spanning from a particular first
   *        axis to the final axis.
   *给定的维度到最后的维度之间包含的数据
   * @param start_axis The first axis to include in the slice.
   */
  inline int count(int start_axis) const {
    return count(start_axis, num_axes());
  }

  /**
   * @brief Returns the 'canonical' version of a (usually) user-specified axis,
   *        allowing for negative indexing (e.g., -1 for the last axis).
   *支持负数索引,相当于从后往前,
   * @param axis_index the axis index.
   *        If 0 <= index < num_axes(), return index.
   *        If -num_axes <= index <= -1, return (num_axes() - (-index)),
   *        e.g., the last axis index (num_axes() - 1) if index == -1,
   *        the second to last if index == -2, etc.
   *        Dies on out of range index.
   */
  inline int CanonicalAxisIndex(int axis_index) const {
    CHECK_GE(axis_index, -num_axes())
        << "axis " << axis_index << " out of range for " << num_axes()
        << "-D Blob with shape " << shape_string();
    CHECK_LT(axis_index, num_axes())
        << "axis " << axis_index << " out of range for " << num_axes()
        << "-D Blob with shape " << shape_string();
    if (axis_index < 0) {
      return axis_index + num_axes();
    }
    return axis_index;
  }

  /// @brief Deprecated legacy shape accessor num: use shape(0) instead.
  inline int num() const { return LegacyShape(0); }
  /// @brief Deprecated legacy shape accessor channels: use shape(1) instead.
  inline int channels() const { return LegacyShape(1); }
  /// @brief Deprecated legacy shape accessor height: use shape(2) instead.
  inline int height() const { return LegacyShape(2); }
  /// @brief Deprecated legacy shape accessor width: use shape(3) instead.
  inline int width() const { return LegacyShape(3); }
  //检查blob的维度
  inline int LegacyShape(int index) const {
    CHECK_LE(num_axes(), 4)
        << "Cannot use legacy accessors on Blobs with > 4 axes.";
    CHECK_LT(index, 4);
    CHECK_GE(index, -4);
    if (index >= num_axes() || index < -num_axes()) {
      // Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse
      // indexing) -- this special case simulates the one-padding used to fill
      // extraneous axes of legacy blobs.
      return 1;
    }
    return shape(index);
  }
  //计算一维线性偏移量?
  inline int offset(const int n, const int c = 0, const int h = 0,
      const int w = 0) const {
    CHECK_GE(n, 0);
    CHECK_LE(n, num());
    CHECK_GE(channels(), 0);
    CHECK_LE(c, channels());
    CHECK_GE(height(), 0);
    CHECK_LE(h, height());
    CHECK_GE(width(), 0);
    CHECK_LE(w, width());
    return ((n * channels() + c) * height() + h) * width() + w;
  }
  //同上,参数不同
  inline int offset(const vector<int>& indices) const {
    CHECK_LE(indices.size(), num_axes());
    int offset = 0;
    for (int i = 0; i < num_axes(); ++i) {
      offset *= shape(i);
      if (indices.size() > i) {
        CHECK_GE(indices[i], 0);
        CHECK_LT(indices[i], shape(i));
        offset += indices[i];
      }
    }
    return offset;
  }
  /**
   * @brief Copy from a source Blob.
   *
   * @param source the Blob to copy from
   * @param copy_diff if false, copy the data; if true, copy the diff
   * @param reshape if false, require this Blob to be pre-shaped to the shape
   *        of other (and die otherwise); if true, Reshape this Blob to other's
   *        shape if necessary
   */
  //复制blob,如果diff为false的话,则复制data,否则复制diff
  //reshape为true,改变blob的形状
  void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
      bool reshape = false);
  //获取内存下的数据(forward采用)
  inline Dtype data_at(const int n, const int c, const int h,
      const int w) const {
    return cpu_data()[offset(n, c, h, w)];
  }
  //获取内存中diff数据(反向传播采用)
  inline Dtype diff_at(const int n, const int c, const int h,
      const int w) const {
    return cpu_diff()[offset(n, c, h, w)];
  }

  inline Dtype data_at(const vector<int>& index) const {
    return cpu_data()[offset(index)];
  }

  inline Dtype diff_at(const vector<int>& index) const {
    return cpu_diff()[offset(index)];
  }
  //同步内存shared_ptr
  inline const shared_ptr<SyncedMemory>& data() const {
    CHECK(data_);
    return data_;
  }

  inline const shared_ptr<SyncedMemory>& diff() const {
    CHECK(diff_);
    return diff_;
  }
  //属性
  const Dtype* cpu_data() const;
  void set_cpu_data(Dtype* data);
  const int* gpu_shape() const;
  const Dtype* gpu_data() const;
  void set_gpu_data(Dtype* data);
  const Dtype* cpu_diff() const;
  const Dtype* gpu_diff() const;
  Dtype* mutable_cpu_data();
  Dtype* mutable_gpu_data();
  Dtype* mutable_cpu_diff();
  Dtype* mutable_gpu_diff();

  //计算
  void Update();
  //从protobuf序列化文件中读取blob对象
  void FromProto(const BlobProto& proto, bool reshape = true);
  //将对象序列化为protobuf中
  void ToProto(BlobProto* proto, bool write_diff = false) const;
  
  //计算绝对值
  /// @brief Compute the sum of absolute values (L1 norm) of the data.
  Dtype asum_data() const;
  /// @brief Compute the sum of absolute values (L1 norm) of the diff.
  Dtype asum_diff() const;
  //计算平方和
  /// @brief Compute the sum of squares (L2 norm squared) of the data.
  Dtype sumsq_data() const;
  /// @brief Compute the sum of squares (L2 norm squared) of the diff.
  Dtype sumsq_diff() const;
  //
  /// @brief Scale the blob data by a constant factor.
  void scale_data(Dtype scale_factor);
  /// @brief Scale the blob diff by a constant factor.
  void scale_diff(Dtype scale_factor);

  /**
   * @brief Set the data_ shared_ptr to point to the SyncedMemory holding the
   *        data_ of Blob other -- useful in Layer%s which simply perform a copy
   *        in their Forward pass.
   *将别的blob的data和diff指针给这个blob,实现数据的共享
    同时注意到的是,这个操作会引起这个blob里面的syncedmemory被释放,
    因为shared_ptr被用=重置的时候,会调用其析构器?
    在前向传递中,对简单的复制比较有用
   * This deallocates the SyncedMemory holding this Blob's data_, as
   * shared_ptr calls its destructor when reset with the "=" operator.
   */
  void ShareData(const Blob& other);
  /**
   * @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the
   *        diff_ of Blob other -- useful in Layer%s which simply perform a copy
   *        in their Forward pass.
   *
   * This deallocates the SyncedMemory holding this Blob's diff_, as
   * shared_ptr calls its destructor when reset with the "=" operator.
   */
  void ShareDiff(const Blob& other);
  //判断形状是否相等
  bool ShapeEquals(const BlobProto& other);

 protected:
  shared_ptr<SyncedMemory> data_;//前向传播的数据,
  shared_ptr<SyncedMemory> diff_;//反向传播的数据
  shared_ptr<SyncedMemory> shape_data_;//旧的形状数据
  vector<int> shape_;//新的形状数据
  int count_;//数据的个数
  int capacity_;//容量

  DISABLE_COPY_AND_ASSIGN(Blob);
};  // class Blob

}  // namespace caffe

#endif  // CAFFE_BLOB_HPP_

View Code