tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
除去name参数用以指定该操作的name,与方法有关的一共五个参数:
第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是
[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意
这是一个4维的Tensor,要求类型为float32和float64其中之一
第二个参数filter:相当于CNN中的卷积核,
它要求是一个Tensor,具有
[filter_height, filter_width, in_channels, out_channels]这样的shape
,具体含义是[卷积核的高度,
],要求类型与参数input相同,有一个地方需要注意,第三维卷积核的宽度,图像通道数,卷积核个数
,就是参数input的第四维in_channels
第三个参数strides:卷积时在图像每一维的步长,这是一个一维的向量,长度4
第四个参数padding:string类型的量,只能是"SAME","VALID"其中之一,这个值决定了不同的卷积方式(后面会介绍)
第五个参数:use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true
结果返回一个Tensor,这个输出,就是我们常说的feature map
那么TensorFlow的卷积具体是怎样实现的呢,用一些例子去解释它:
1.考虑一种最简单的情况,现在有一张3×3单通道的图像(对应的shape:[1,3,3,1]),用一个1×1的卷积核(
)去做卷积,最后会得到一张3×3的feature map对应的shape:[1,1,1,1]
2.增加图片的通道数,使用
一张3×3五通道的图像
(对应的shape:[1,3,3,5]),
用一个1×1的卷积核(
)去做卷积,仍然是一张3×3对应的shape:[1,1,1,1]
的feature map,这就相当于每一个像素点,卷积核都与该像素点的每一个通道做点积
input = tf.Variable(tf.random_normal([1,3,3,5])) filter = tf.Variable(tf.random_normal([1,1,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')
3.把卷积核扩大,现在用3×3的卷积核做卷积,最后的输出是一个值,相当于情况2的feature map所有像素点的值求和
input = tf.Variable(tf.random_normal([1,3,3,5])) filter = tf.Variable(tf.random_normal([3,3,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')
4.使用更大的图片将情况2的图片扩大到5×5,仍然是3×3的卷积核,令步长为1,输出3×3的feature map
input = tf.Variable(tf.random_normal([1,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')
注意我们可以把这种情况看成情况2和情况3的中间状态,卷积核以步长1滑动遍历全图,以下x表示的位置,表示卷积核停留的位置,每停留一个,输出feature map的一个像素
.....
.xxx. .xxx. .xxx. .....
5.上面我们一直令参数padding的值为‘VALID’,当其为‘SAME’时,表示卷积核可以停留在图像边缘,如下,输出5×5的feature map
input = tf.Variable(tf.random_normal([1,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,1])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')
xxxxx xxxxx xxxxx xxxxx xxxxx
6.如果卷积核有多个
input = tf.Variable(tf.random_normal([1,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,7])) op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME')
此时输出7张5×5的feature map
7.步长不为1的情况,文档里说了对于图片,因为只有两维,通常strides取[1,stride,stride,1]
input = tf.Variable(tf.random_normal([1,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,7])) op = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')
此时,输出7张3×3的feature map
x.x.x
..... x.x.x ..... x.x.x
8.如果batch值不为1,同时输入10张图
input = tf.Variable(tf.random_normal([10,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,7])) op = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME')
每张图,都有7张3×3的feature map,输出的shape就是[10,3,3,7]
最后,把程序总结一下:
import tensorflow as tf #case 2 input = tf.Variable(tf.random_normal([1,3,3,5])) filter = tf.Variable(tf.random_normal([1,1,5,1])) op2 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID') #case 3 input = tf.Variable(tf.random_normal([1,3,3,5])) filter = tf.Variable(tf.random_normal([3,3,5,1])) op3 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID') #case 4 input = tf.Variable(tf.random_normal([1,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,1])) op4 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID') #case 5 input = tf.Variable(tf.random_normal([1,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,1])) op5 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME') #case 6 input = tf.Variable(tf.random_normal([1,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,7])) op6 = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='SAME') #case 7 input = tf.Variable(tf.random_normal([1,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,7])) op7 = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME') #case 8 input = tf.Variable(tf.random_normal([10,5,5,5])) filter = tf.Variable(tf.random_normal([3,3,5,7])) op8 = tf.nn.conv2d(input, filter, strides=[1, 2, 2, 1], padding='SAME') init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) print("case 2") print(sess.run(op2)) print("case 3") print(sess.run(op3)) print("case 4") print(sess.run(op4)) print("case 5") print(sess.run(op5)) print("case 6") print(sess.run(op6)) print("case 7") print(sess.run(op7)) print("case 8") print(sess.run(op8))
因为是随机初始化,我的结果是这样的:
case 2 [[[[-0.64064658] [-1.82183945] [-2.63191342]] [[ 8.05008984] [ 1.66023612] [ 2.53465152]] [[-3.51703644] [-5.92647743] [ 0.55595356]]]] case 3 [[[[ 10.53139973]]]] case 4 [[[[ 10.45460224] [ 6.23760509] [ 4.97157574]] [[ 3.05653667] [-11.43907833] [ -2.05077457]] [[ -7.48340607] [ -0.90697062] [ 3.27171206]]]] case 5 [[[[ 5.30279875] [ -2.75329947] [ 5.62432575] [-10.24609661] [ 0.12603235]] [[ 0.2113893 ] [ 1.73748684] [ -3.04372549] [ -7.2625494 ] [-12.76445198]] [[ -1.57414591] [ -3.39802694] [ -6.01582575] [ -1.73042905] [ -3.07183361]] [[ 1.41795194] [ -2.02815866] [-17.08983231] [ 11.98958111] [ 2.44879103]] [[ 0.29902667] [ -3.19712877] [ -2.84978414] [ -2.71143317] [ 5.99366283]]]] case 6 [[[[ 12.02504349 4.35077286 2.67207813 5.77893162 6.98221684 -0.96858567 -8.1147871 ] [ -0.02988982 -2.52141953 15.24755192 6.39476395 -4.36355495 -2.34515095 5.55743504] [ -2.74448752 -1.62703776 -6.84849405 10.12248802 3.7408421 4.71439075 6.13722801] [ 0.82365227 -1.00546622 -3.29460764 5.12690163 -0.75699937 -2.60097408 -8.33882809] [ 0.76171923 -0.86230004 -6.30558443 -5.58426857 2.70478535 8.98232937 -2.45504045]] [[ 3.13419819 -13.96483231 0.42031103 2.97559547 6.86646557 -3.44916964 -0.10199898] [ 11.65359879 -5.2145977 4.28352737 2.68335319 3.21993709 -6.77338028 8.08918095] [ 0.91533852 -0.31835344 -1.06122255 -9.11237717 5.05267143 5.6913228 -5.23855162] [ -0.58775592 -5.03531456 14.70254898 9.78966522 -11.00562763 -4.08925819 -3.29650426] [ -2.23447251 -0.18028721 -4.80610704 11.2093544 -6.72472 -2.67547607 1.68422937]] [[ -3.40548897 -9.70355129 -1.05640507 -2.55293012 -2.78455877 -15.05377483 -4.16571808] [ 13.66925812 2.87588191 8.29056358 6.71941566 2.56558466 10.10329056 2.88392687] [ -6.30473804 -3.3073864 12.43273926 -0.66088223 2.94875336 0.06056046 -2.78857946] [ -7.14735603 -1.44281793 3.3629775 -7.87305021 2.00383091 -2.50426936 -6.93097973] [ -3.15817571 1.85821593 0.60049552 -0.43315536 -4.43284273 0.54264796 1.54882073]] [[ 2.19440389 -0.21308756 -4.35629082 -3.62100363 -0.08513772 -0.80940366 7.57606506] [ -2.65713739 0.45524287 -16.04298019 -5.19629049 -0.63200498 1.13256514 -6.70045137] [ 8.00792599 4.09538221 -6.16250181 8.35843849 -4.25959206 -1.5945878 -7.60996151] [ 8.56787586 5.85663748 -4.38656425 0.12728286 -6.53928804 2.3200655 9.47253895] [ -6.62967777 2.88872099 -2.76913023 -0.86287498 -1.4262073 -6.59967232 5.97229099]] [[ -3.59423327 4.60458899 -5.08300591 1.32078576 3.27156973 0.5302844 -5.27635145] [ -0.87793881 1.79624665 1.66793108 -4.70763969 -2.87593603 -1.26820421 -7.72825718] [ -1.49699068 -3.40959787 -1.21225107 -1.11641395 -8.50123024 -0.59399474 3.18010235] [ -4.4249506 -0.73349547 -1.49064219 -6.09967899 5.18624878 -3.80284953 -0.55285597] [ -1.42934585 2.76053572 -5.19795799 0.83952439 -0.15203482 0.28564462 2.66513705]]]] case 7 [[[[ 2.66223097 2.64498258 -2.93302107 3.50935125 4.62247562 2.04241085 -2.65325522] [ -0.03272867 -1.00103927 -4.3691597 2.16724801 7.75251007 -4.6788125 -0.89318085] [ 4.74175072 -0.80443329 -1.02710629 -6.68772554 4.57605314 -3.72993755 4.79951382]] [[ 5.249547 8.92288399 7.10703182 -9.10498428 -7.43814278 -8.69616318 1.78862095] [ 7.53669024 -14.52316284 -2.55870199 -1.11976743 3.81035042 2.45559502 -2.35436153] [ 3.93275881 5.11939669 -4.7114296 -11.96386623 2.11866689 0.57433248 -7.19815397]] [[ 0.25111672 1.40801668 1.28818977 -2.64093828 0.98182392 3.69512987 4.78833389] [ 0.30391204 -10.26406097 6.05877018 -6.04775047 8.95922089 0.80235004 -5.4520669 ] [ -7.24697018 -2.33498096 -10.20039558 -1.24307609 3.99351597 -8.1029129 2.44411373]]]] case 8 [[[[ -6.84037447e+00 1.33321762e-01 -5.09891272e+00 5.55682087e+00 8.22002888e+00 -4.94586229e-02 4.19012117e+00] [ 6.79884481e+00 1.21652853e+00 -5.69557810e+00 -1.33555794e+00 3.24849486e-01 4.88868570e+00 -3.90220714e+00] [ -3.53190374e+00 -4.11765718e+00 4.54340839e+00 1.85549557e+00 -3.38682461e+00 2.62719369e+00 -4.98658371e+00]] [[ -9.86354351e+00 -6.76713943e+00 3.62617874e+00 -6.16720629e+00 1.96754158e+00 -4.54203081e+00 -1.37485743e+00] [ -1.76783955e+00 2.35163045e+00 -2.21175838e+00 3.83091879e+00 3.16964531e+00 -7.58307219e+00 4.71943617e+00] [ 1.20776439e+00 4.86006308e+00 1.04233503e+01 -7.82327271e+00 5.39195156e+00 -6.31672382e+00 1.35577369e+00]] [[ -3.65947580e+00 -1.98961139e+00 7.53771305e+00 2.79224634e-01 -2.90050888e+00 -3.57466817e+00 -6.33232594e-01] [ 5.89931488e-01 2.83219159e-01 -1.65850735e+00 -6.45545387e+00 -1.17044592e+00 1.40343285e+00 5.74970901e-01] [ -8.58810043e+00 -1.25172977e+01 6.84177876e-01 3.80004168e+00 -1.54420209e+00 -3.32161427e+00 -1.05423713e+00]]] [[[ -4.82677078e+00 3.11167526e+00 -4.32694483e+00 -4.77198696e+00 2.32186103e+00 1.65402293e-01 -5.32707453e+00] [ 3.91779566e+00 6.27949667e+00 2.32975650e+00 -1.06336937e+01 4.44044876e+00 8.08288479e+00 -5.83346319e+00] [ -2.82141399e+00 -9.16103745e+00 6.98908520e+00 -5.66505909e+00 -2.11039782e+00 2.27499461e+00 -5.74120235e+00]] [[ 6.71680808e-01 -4.01104212e+00 -4.61760712e+00 1.02667952e+01 -8.21200657e+00 -8.57054043e+00 1.71461976e+00] [ 2.40794683e+00 -2.63071585e+00 9.68963623e+00 -4.51778412e+00 -3.91073084e+00 -5.91874409e+00 9.96273613e+00] [ 2.67705870e+00 2.85607010e-01 2.45853162e+00 4.44810390e+00 -2.11300468e+00 -5.77583075e+00 2.83322239e+00]] [[ -8.21949577e+00 -7.57754421e+00 3.93484974e+00 2.26189137e+00 -3.49395227e+00 -6.40283823e+00 -6.00450039e-01] [ 2.95964479e-02 -1.19976890e+00 5.38537979e+00 4.62369967e+00 3.89780998e+00 -6.36872959e+00 7.12107182e+00] [ -8.85006547e-01 1.92706418e+00 3.26668215e+00 2.03566647e+00 1.44209075e+00 -6.48463774e+00 -8.33671093e-02]]] [[[ -2.64583921e+00 3.86011934e+00 4.18198538e+00 3.50338411e+00 6.35944796e+00 -4.28423309e+00 4.87355423e+00] [ 4.42271233e+00 3.92883778e+00 -5.59371090e+00 4.98251200e+00 -3.45068884e+00 2.91921115e+00 1.03779554e+00] [ 1.36162388e+00 -1.06808968e+01 -3.92534947e+00 1.85111761e-01 -4.87255526e+00 1.66666222e+01 -1.04918976e+01]] [[ -4.34632540e+00 1.74614882e+00 -2.89012527e+00 -8.74067783e+00 5.06610107e+00 1.24989772e+00 -3.06433105e+00] [ 2.49973416e+00 2.14041996e+00 -4.71008825e+00 7.39326143e+00 3.94770741e+00 8.23049164e+00 -1.67046225e+00] [ -2.94665837e+00 -4.58543825e+00 7.21219683e+00 1.09780006e+01 5.17258358e+00 7.90257788e+00 -2.13929534e+00]] [[ 4.20402241e+00 -2.98926830e+00 -3.89006615e-01 -8.16001511e+00 -2.38355541e+00 1.42584383e+00 -5.46632290e+00] [ 5.52395058e+00 5.09255171e+00 -1.08742390e+01 -4.96262169e+00 -1.35298109e+00 3.65663052e-01 -3.40589857e+00] [ -6.95647061e-01 -4.12855625e+00 2.66609401e-01 -9.39565372e+00 -3.85058141e+00 2.51248240e-01 -5.77149725e+00]]] [[[ 1.22103825e+01 5.72040796e+00 -3.56989503e+00 -1.02248180e+00 -5.20942688e-01 7.15008640e+00 3.43482435e-01] [ 6.01409674e+00 -1.59511256e+00 -6.48080063e+00 -1.82889538e+01 -1.03537569e+01 -1.48270035e+01 -5.26662111e+00] [ 5.51758146e+00 -2.91831636e+00 3.75461340e-01 -9.23893452e-02 -9.22101116e+00 7.16952372e+00 -6.86479330e-01]] [[ -3.03645611e+00 6.68620300e+00 -3.31973934e+00 -4.91346550e+00 9.20719814e+00 -2.55552864e+00 -2.16087699e-02] [ -3.02986956e+00 -1.29726543e+01 1.53023469e+00 -8.19733238e+00 5.68085670e+00 -1.72856820e+00 -4.69369221e+00] [ -6.67176056e+00 8.76355553e+00 2.18996063e-01 -4.38777208e+00 -6.35764122e-01 -1.37812555e+00 -4.41474581e+00]] [[ 2.25345469e+00 1.02142305e+01 -1.71714854e+00 -5.29060185e-01 2.27982092e+00 -8.75302982e+00 7.13998675e-02] [ -6.67547846e+00 3.67722750e+00 -3.44172812e+00 5.69674826e+00 -2.28723526e+00 5.92991543e+00 5.53608060e-01] [ -1.01174891e-01 -2.73731589e+00 -4.06187654e-01 6.54158068e+00 2.59603882e+00 2.99202776e+00 -2.22350287e+00]]] [[[ -1.81271315e+00 2.47674489e+00 -2.90284491e+00 1.34291325e+01 7.69864845e+00 -1.27134466e+00 3.02233839e+00] [ -2.08135307e-01 1.03206539e+00 1.90775347e+00 9.01517391e+00 -3.52140331e+00 9.05393791e+00 -9.12732124e-01] [ 1.12128162e+00 5.98179293e+00 -2.27206993e+00 -5.21281779e-01 6.20835352e+00 3.73474598e+00 1.18961644e+00]] [[ 3.17242837e+00 -6.00571585e+00 2.37661076e+00 -5.64483738e+00 -6.45412731e+00 8.75251675e+00 7.33790398e-02] [ 3.08957529e+00 -1.06855690e-01 -5.16810894e-01 -9.41085911e+00 8.23878098e+00 6.79738426e+00 -1.23478663e+00] [ -9.20640087e+00 -6.82801771e+00 -5.96975613e+00 7.61030674e-01 -4.35995817e+00 -3.54818010e+00 -2.56281614e+00]] [[ 4.69872713e-01 8.36402321e+00 5.37103415e-01 -1.68033957e-01 -3.21731424e+00 -7.34270859e+00 -3.14253521e+00] [ 6.69656086e+00 -5.27954197e+00 -8.57314682e+00 4.84328842e+00 -2.96387672e+00 2.47114658e+00 2.85376692e+00] [ -7.86032295e+00 -7.18845367e+00 -3.27161223e-01 9.27330971e+00 -6.14093494e+00 -4.49041557e+00 3.47160912e+00]]] [[[ -1.89188433e+00 5.43082857e+00 6.04252160e-01 6.92894220e+00 8.59178162e+00 1.02003086e+00 5.31300211e+00] [ -8.97491455e-01 6.52438164e+00 -4.43710327e+00 7.10509634e+00 8.84234428e+00 3.08552694e+00 2.78152227e+00] [ -9.40537453e-02 2.34666920e+00 -5.57496691e+00 -8.62346458e+00 -1.32807600e+00 -8.12027454e-02 -9.00946975e-01]] [[ -3.53673506e+00 8.93675327e+00 3.27456236e-01 -3.41519475e+00 7.69804525e+00 -5.18698692e+00 -3.96991730e+00] [ 1.99988627e+00 -9.16149998e+00 -7.49944544e+00 5.02162695e-01 3.57059622e+00 9.17566013e+00 -1.77589107e+00] [ -1.18147678e+01 -7.68992901e+00 1.88449645e+00 2.77643538e+00 -1.11342735e+01 -3.12916255e+00 -3.34161663e+00]] [[ -3.62668943e+00 -3.10993242e+00 3.60834384e+00 4.69678783e+00 -1.73794723e+00 -1.27035933e+01 3.65882218e-01] [ -8.97550106e+00 -4.33533072e-01 4.41743970e-01 -5.83433771e+00 -4.85818958e+00 9.56629372e+00 3.56375504e+00] [ -6.87092066e+00 1.96412420e+00 5.14182663e+00 -8.97769547e+00 3.61136627e+00 5.91387987e-01 -2.95224571e+00]]] [[[ -1.11802626e+00 3.24175072e+00 5.94067669e+00 9.29727936e+00 9.28199863e+00 -4.80889034e+00 6.96202660e+00] [ 7.23959684e+00 3.11182523e+00 1.84116721e+00 5.12095928e-01 -7.65049171e+00 -4.05325556e+00 5.38544941e+00] [ 4.66621685e+00 -1.61665392e+00 9.76448345e+00 2.38519001e+00 -2.06760812e+00 -6.03633642e-01 3.66192675e+00]] [[ 1.52149725e+00 -1.84441996e+00 4.87877655e+00 2.96750760e+00 2.37311172e+00 -2.98487616e+00 9.98114228e-01] [ 9.20035839e+00 5.24396753e+00 -2.57312679e+00 -7.26040459e+00 -1.17509928e+01 6.85688591e+00 3.37383580e+00] [ 6.17629957e+00 -5.15294194e-01 -1.64212489e+00 -5.70274448e+00 -2.36294913e+00 2.60432816e+00 2.63957453e+00]] [[ 7.91168213e-03 -1.15018034e+00 3.05471039e+00 3.31086922e+00 5.35744762e+00 1.14832592e+00 9.56500292e-01] [ 4.86464739e+00 5.37348413e+00 1.42920148e+00 1.62809372e+00 2.61656570e+00 7.88479471e+00 -6.09324336e-01] [ 7.71319962e+00 -1.73930550e+00 -2.99925613e+00 -3.14857435e+00 3.19194889e+00 1.70928288e+00 4.90955710e-01]]] [[[ -1.79046512e+00 8.54369068e+00 1.85044312e+00 -9.88471413e+00 9.52995300e-01 -1.34820042e+01 -1.13713551e+01] [ 8.37582207e+00 6.64692163e+00 -3.22429276e+00 3.37997460e+00 3.91468263e+00 6.96061993e+00 -1.18029404e+00] [ -2.13278866e+00 4.36152029e+00 -4.14593410e+00 -2.15160155e+00 1.90767622e+00 1.16321917e+01 -3.72644544e+00]] [[ -5.03508925e-01 -6.33426476e+00 -1.06393566e+01 -6.49301624e+00 -6.31036520e+00 3.13485146e+00 -5.77433109e-01] [ 7.41444230e-01 -4.87326956e+00 -5.98253345e+00 -9.14121056e+00 -8.64077091e-01 2.06696177e+00 -7.59688473e+00] [ 1.38767815e+00 1.84418947e-01 5.72539902e+00 -2.07557893e+00 9.70911503e-01 1.16765432e+01 -1.40111232e+00]] [[ -1.21869087e+00 2.44499159e+00 -1.65706706e+00 -6.19807529e+00 -5.56950712e+00 -1.72372568e+00 3.62687564e+00] [ 2.23708963e+00 -2.87862611e+00 2.71666467e-01 4.35115099e+00 -8.85548592e-01 2.91860628e+00 8.10848951e-01] [ -5.33635712e+00 7.15072036e-01 5.21240902e+00 -3.11152220e+00 2.01623154e+00 -2.28398323e-01 -3.23233747e+00]]] [[[ 3.77991509e+00 5.53513861e+00 -1.82022047e+00 4.22430277e+00 5.60331726e+00 -4.28308249e+00 4.54524136e+00] [ -5.30983162e+00 -3.45605731e+00 2.69374561e+00 -6.16836596e+00 -9.18601036e+00 -1.58697796e+00 -5.73809910e+00] [ 2.18868661e+00 6.96338892e-01 1.88057957e+01 -4.21353197e+00 1.20818818e+00 2.85108542e+00 6.62180042e+00]] [[ 1.01285219e+01 -4.86819077e+00 -2.45067930e+00 7.50106812e-01 4.37201977e+00 4.78472042e+00 1.19103444e+00] [ -3.26395583e+00 -5.59358537e-01 1.52001972e+01 -5.93994498e-01 -1.49040818e+00 -7.02547312e+00 -1.29268813e+00] [ 1.02763653e+01 1.31108007e+01 -2.91605043e+00 -1.37688947e+00 3.33029580e+00 1.96966705e+01 2.55259371e+00]] [[ 4.58397627e+00 -3.19160700e+00 -6.51985502e+00 1.02908373e+01 -4.17618275e+00 -9.69347239e-01 7.46259832e+00] [ 6.09876537e+00 1.33044279e+00 5.04027081e+00 -6.87740147e-01 4.14770365e+00 -2.26751328e-01 1.54876924e+00] [ 2.70127630e+00 -1.59834003e+00 -1.82587504e+00 -5.92888784e+00 -5.65038967e+00 -6.46078014e+00 -1.80765367e+00]]] [[[ -1.57899165e+00 3.39969063e+00 1.02308102e+01 -7.77082300e+00 -8.02129686e-01 -3.67387819e+00 -1.37204361e+00] [ 3.93093729e+00 6.17498016e+00 -1.41695750e+00 -1.26903206e-01 2.18985319e+00 5.83657503e-01 7.39725351e-01] [ 5.53898287e+00 2.22283316e+00 -1.10478985e+00 2.68644023e+00 -2.59913635e+00 3.74231935e+00 4.85016155e+00]] [[ 4.05368614e+00 -3.74058294e+00 7.32348633e+00 -1.17656231e+00 3.71810269e+00 -1.63957381e+00 9.91670132e-01] [ -1.29317007e+01 1.12296543e+01 -1.13844347e+01 -7.13933802e+00 -8.65884399e+00 -5.56065178e+00 -1.46718264e+00] [ -8.08718109e+00 -1.98826480e+00 -4.07488203e+00 2.06440473e+00 1.13524094e+01 5.68703651e+00 -2.18706942e+00]] [[ 1.51166654e+00 -6.84034204e+00 9.33474350e+00 -4.80931902e+00 -6.24172688e-02 -4.21381521e+00 -5.73313046e+00] [ -1.35943902e+00 5.27799511e+00 -3.77813816e+00 6.88291168e+00 4.35068893e+00 -1.02540245e+01 8.86861205e-01] [ -4.49999619e+00 -2.97630525e+00 -6.18604183e-01 -2.49702692e+00 -6.76169348e+00 -2.55930996e+00 -2.71291423e+00]]]]
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:【TensorFlow】tf.nn.conv2d是怎样实现卷积的? - Python技术站