Variable和tensor的区别和联系
Variable是篮子,而tensor是鸡蛋,鸡蛋应该放在篮子里才能方便拿走(定义variable时一个参数就是tensor)
Variable这个篮子里除了装了tensor外还有requires_grad参数,表示是否需要对其求导,默认为False
Variable这个篮子呢,自身有一些属性
比如grad,梯度variable.grad是d(y)/d(variable)保存的是变量y对variable变量的梯度值,如果requires_grad参数为False,所以variable.grad返回值为None,如果为True,返回值就为对variable的梯度值
比如grad_fn,对于用户自己创建的变量(Variable())grad_fn是为none的,也就是不能调用backward函数,但对于由计算生成的变量,如果存在一个生成中间变量的requires_grad为true,那其的grad_fn不为none,反则为none
比如data,这个就很简单,这个属性就是装的鸡蛋(tensor)
grad:保存了data的梯度,本事是个Variable而非Tensor,与data形状一致
grad_fn:指向Function对象,用于反向传播的梯度计算之用
【tensor 是一个多维矩阵】
用一个例子说明,Variable的定义:
import torch from torch.autograd import Variable # torch 中 Variable 模块 tensor = torch.FloatTensor([[1,2],[3,4]]) # 把鸡蛋放到篮子里, requires_grad是参不参与误差反向传播, 要不要计算梯度 variable = Variable(tensor, requires_grad=True) print(tensor) """ 1 2 3 4 [torch.FloatTensor of size 2x2] """ print(variable) """ Variable containing: 1 2 3 4 [torch.FloatTensor of size 2x2] """
注:tensor不能反向传播,variable可以反向传播
二、Variable求梯度
Variable计算时,它会逐渐地生成计算图。这个图就是将所有的计算节点都连接起来,最后进行误差反向传递的时候,一次性将所有Variable里面的梯度都计算出来,而tensor就没有这个能力。
v_out.backward() # 模拟 v_out 的误差反向传递 print(variable.grad) # 初始 Variable 的梯度 ''' 0.5000 1.0000 1.5000 2.0000 '''
三、获取Variable里面的数据
直接print(Variable) 只会输出Variable形式的数据,在很多时候是用不了的。所以需要转换一下,将其变成tensor形式。
print(variable) # Variable 形式 """ Variable containing: 1 2 3 4 [torch.FloatTensor of size 2x2] """ print(variable.data) # 将variable形式转为tensor 形式 """ 1 2 3 4 [torch.FloatTensor of size 2x2] """ print(variable.data.numpy()) # numpy 形式 """ [[ 1. 2.] [ 3. 4.]] """
四:关于require_grad对variable的作用
代码一:
import numpy as np import torch from torch.autograd import Variable x = Variable(torch.ones(2,2),requires_grad = False) temp = Variable(torch.zeros(2,2),requires_grad = True) y = x + temp + 2 y = y.mean() #求平均数 y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度 print(x.grad) # d(y)/d(x)
none
(因为requires_grad=False)
代码二:
import numpy as np import torch from torch.autograd import Variable x = Variable(torch.ones(2,2),requires_grad = False) temp = Variable(torch.zeros(2,2),requires_grad = True) y = x + temp + 2 y = y.mean() #求平均数 y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度 print(temp.grad) # d(y)/d(temp)
tensor([[0.2500, 0.2500],
[0.2500, 0.2500]])
代码三:
import numpy as np import torch from torch.autograd import Variable x = Variable(torch.ones(2,2),requires_grad = False) temp = Variable(torch.zeros(2,2),requires_grad = True) y = x + 2 y = y.mean() #求平均数 y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度 print(x.grad) # d(y)/d(x)
File "path", line 12, in <module>
y.backward()
import numpy as np import torch from torch.autograd import Variable x = Variable(torch.ones(2,2),requires_grad = False) temp = Variable(torch.zeros(2,2),requires_grad = True) y = x + 2 y = y.mean() #求平均数 #y.backward() #反向传递函数,用于求y对前面的变量(x)的梯度 print(y.grad_fn) # d(y)/d(x)
none
在每次backward后,grad值是会累加的,所以利用BP算法,每次迭代是需要将grad清零的。
x.grad.data.zero_()
(in-place操作需要加上_,即zero_)
在PyTorch中计算图的特点总结如下:
autograd根据用户对Variable的操作来构建其计算图。 requires_grad variable默认是不需要被求导的,即requires_grad属性默认为False,如果某一个节点的requires_grad为True,那么所有依赖它的节点requires_grad都为True。 volatile variable的volatile属性默认为False,如果某一个variable的volatile属性被设为True,那么所有依赖它的节点volatile属性都为True。volatile属性为True的节点不会求导,volatile的优先级比requires_grad高。 retain_graph 多次反向传播(多层监督)时,梯度是累加的。一般来说,单次反向传播后,计算图会free掉,也就是反向传播的中间缓存会被清空【这就是动态度的特点】。为进行多次反向传播需指定retain_graph=True来保存这些缓存。 .backward() 反向传播,求解Variable的梯度。放在中间缓存中。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:莫烦pytorch学习笔记(二)——variable - Python技术站