Python arcpy创建栅格、批量拼接栅格

  本文介绍基于Python语言arcpy模块,实现栅格影像图层建立与多幅遥感影像数据批量拼接Mosaic)的操作。

  首先,相关操作所需具体代码如下:

import os
import arcpy

file_path="G:/Postgraduate/LAI_Glass_RTlab/A2018161_Dif/DRT/"
out_file_path="G:/Postgraduate/LAI_Glass_RTlab/A2018161_Dif/DRT/"
out_file_name="Global.tif"

file_name_list=os.listdir(file_path)

tif_file_path=file_path+file_name_list[0]
cell_size_x=arcpy.GetRasterProperties_management(tif_file_path,"CELLSIZEX")
cell_size=cell_size_x.getOutput(0)
value_type=arcpy.GetRasterProperties_management(tif_file_path,"VALUETYPE")
describe=arcpy.Describe(tif_file_path)
spatial_reference=describe.spatialReference

arcpy.CreateRasterDataset_management(out_file_path,out_file_name,cell_size,"16_BIT_SIGNED",
                                     spatial_reference,"1")

out_file=out_file_path+out_file_name
for file in file_name_list:
    file_path_name=file_path+file
    print(file_path_name)
    arcpy.Mosaic_management([file_path_name],out_file)

  其中,file_path为存放有多景初始遥感影像的路径格式为.tif栅格文件(如果不是.tif格式,例如是.hdf等文件,需首先进行文件格式的转换);out_file_path为拼接后所得结果栅格图层的存放路径;out_file_name为拼接后所得结果栅格图层的文件名称,其可选格式有很多,如下图所示。

Python arcpy创建栅格、批量拼接栅格

  在这里,我们默认所得拼接结果图层为一个(也就是file_path文件夹中全部的待处理遥感影像最终全拼接在一起);如果大家需要使得拼接结果图层是多幅(也就是file_path文件夹中待处理遥感影像依据区域、时间等分为很多不同的部分,每一部分拼接在一起),可以参考Python GDAL读取栅格数据并基于质量评估波段QA对指定数据加以筛选掩膜,利用其中的循环方式实现需求。

  随后,通过os.listdir()函数获取file_path路径下的栅格文件,并存储于file_name_list列表中。

  接下来需要创建一个新的栅格图层。之所以要进行这一步骤,是因为本文后期选择用arcpy.Mosaic_management()函数进行栅格的批量拼接,因此需要首先创建一个新的、空的栅格图层作为拼接的基准。如果大家的需求不是批量拼接栅格数据,而是单纯想利用arcpy进行新栅格的创建,那就只看这一部分的代码即可。

  在这里,我们选择用file_path路径下的第一个栅格数据(下称“第一栅格”)作为新栅格图层中各项属性(例如像素边长、像素数据格式等)的依据。首先,arcpy.GetRasterProperties_management()函数获取第一栅格的像素x边边长;因为一般栅格数据中像素都是正方形,因此我们就通过cell_size=cell_size_x.getOutput(0)将第一栅格的像素x边边长作为新栅格图层像素x边与y边二者的边长。再利用arcpy.GetRasterProperties_management()函数获取第一栅格的数据格式;最后利用中间变量describe获取第一栅格的空间参考信息。

  完成以上步骤后,将已获取的第一栅格的各类信息通过函数arcpy.CreateRasterDataset_management()带入新栅格中。在这里需要注意:尽可能在将要拼接时选择新栅格"16_BIT_SIGNED"及以下的数据格式(具体数据格式类别如下图),且将file_path路径下待拼接的栅格数据的数据格式也全部修改为这一格式;否则可能会由于数据量大而导致拼接过程极慢。我之前就是由于选用了32 bit float格式的栅格数据进行拼接,导致全球范围的MODIS一个植被产品数据拼接花了将近一天的时间。如果大家的栅格像素数据包含小数,可以通过乘上一个缩放系数的方式进行数据整数化。

Python arcpy创建栅格、批量拼接栅格

  代码最后的一个for循环,就是遍历file_name_list中的各个栅格数据,并通过arcpy.Mosaic_management()函数加以拼接即可。

  以上,便完成了本次批量拼接的操作。这里还有一点需要注意:由于arcpy模块的限制,如果大家的Python版本是3.0及以上,往往不能直接运行上述代码,最好是在ArcMap的Python运行框或其对应IDLE(如下图所示)中运行。

Python arcpy创建栅格、批量拼接栅格

  至此,大功告成。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python arcpy创建栅格、批量拼接栅格 - Python技术站

(0)
上一篇 2023年3月31日 下午8:44
下一篇 2023年3月31日 下午8:44

相关文章

  • Python修改柱状图边缘柱子与图边界的距离

      本文介绍基于Python中matplotlib.pyplot模块,修改柱状图、条形图最两侧的柱子与图像边缘之间距离的方法。   最近,绘制了一个水平的柱状图,但是发现图的上、下边距(不是柱子与柱子相互之间的间距,而是最上方与最下方柱子各自与图边缘的距离)相对较大,非常影响美观。同时需要说明的是,本文这里的柱状图纵坐标变量是代表变量名称的不同的字符串,而不…

    Python开发 2023年3月31日
    00
  • Python TensorFlow深度学习回归代码:DNNRegressor

      本文介绍基于Python语言中TensorFlow的tf.estimator接口,实现深度学习神经网络回归的具体方法。 目录 1 写在前面 2 代码分解介绍 2.1 准备工作 2.2 参数配置 2.3 原有模型删除 2.4 数据导入与数据划分 2.5 Feature Columns定义 2.6 模型优化方法构建与模型结构构建 2.7 模型训练 2.8 模…

    Python开发 2023年3月31日
    00
  • Python批量读取HDF多波段栅格数据并绘制像元直方图

      本文介绍基于Python语言gdal模块,实现多波段HDF栅格图像文件的读取、处理与像元值可视化(直方图绘制)等操作。   另外,基于gdal等模块读取.tif格式栅格图层文件的方法可以查看Python批量绘制遥感影像数据的直方图,读取单波段.hdf格式栅格图层文件的方法可以查看Python GDAL读取栅格数据并基于质量评估波段QA对指定数据加以筛选掩…

    Python开发 2023年3月31日
    00
  • Python核对遥感影像批量下载情况的方法

      本文介绍批量下载遥感影像时,利用Python实现已下载影像文件的核对,并自动生成未下载影像的下载链接列表的方法。   批量下载大量遥感影像数据对于GIS学生与从业人员可谓十分常见。然而,对于动辄成千上万景的遥感影像文件,下载过程中可能会出现各类失败问题,且或许在下载软件或工具中还不能很好显示失败的文件有哪些(这一点在批量下载MODIS产品时显得尤为突出,…

    Python开发 2023年3月31日
    00
  • Python求取文件夹内的文件数量、子文件夹内的文件数量

      本文介绍基于Python语言,统计文件夹中文件数量;若其含有子文件夹,还将对各子文件夹中的文件数量一并进行统计的方法。   最近,需要统计多个文件夹内部的文件数量,包括其中所含子文件夹中的文件数量。其中,这多个需要统计文件数量的文件夹都放在一个总文件夹内。   这一操作基于Python来实现是非常方便、快捷的。话不多说,我们对相关的Python代码来进行…

    Python开发 2023年3月31日
    00
  • 无需代码绘制人工神经网络ANN模型结构图的方法

      本文介绍几种基于在线网页或软件的、不用代码的神经网络模型结构可视化绘图方法。   之前向大家介绍了一种基于Python第三方ann_visualizer模块的神经网络结构可视化方法,大家可以直接点击文章Python绘制神经网络模型图进行查看;这一方法可以对Dense隐藏层以及MaxPooling层、Dropout层、Flatten层等其它类型的隐藏层加以…

    人工智能概论 2023年5月10日
    00
  • Python实现随机森林RF并对比自变量的重要性

      本文介绍在Python环境中,实现随机森林(Random Forest,RF)回归与各自变量重要性分析与排序的过程。   其中,关于基于MATLAB实现同样过程的代码与实战,大家可以点击查看MATLAB实现随机森林(RF)回归与自变量影响程度分析这篇文章。   本文分为两部分,第一部分为代码的分段讲解,第二部分为完整代码。 1 代码分段讲解 1.1 模块…

    Python开发 2023年3月31日
    00
  • 随机森林RF模型超参数的优化:Python实现

      本文介绍基于Python的随机森林(Random Forest,RF)回归代码,以及模型超参数(包括决策树个数与最大深度、最小分离样本数、最小叶子节点样本数、最大分离特征数等)自动优化的代码。   本文是在上一篇文章Python实现随机森林RF并对比自变量的重要性的基础上完成的,因此本次仅对随机森林模型超参数自动择优部分的代码加以详细解释;而数据准备、模…

    Python开发 2023年3月31日
    00
合作推广
合作推广
分享本页
返回顶部