Python arcpy创建栅格、批量拼接栅格

  本文介绍基于Python语言arcpy模块,实现栅格影像图层建立与多幅遥感影像数据批量拼接Mosaic)的操作。

  首先,相关操作所需具体代码如下:

import os
import arcpy

file_path="G:/Postgraduate/LAI_Glass_RTlab/A2018161_Dif/DRT/"
out_file_path="G:/Postgraduate/LAI_Glass_RTlab/A2018161_Dif/DRT/"
out_file_name="Global.tif"

file_name_list=os.listdir(file_path)

tif_file_path=file_path+file_name_list[0]
cell_size_x=arcpy.GetRasterProperties_management(tif_file_path,"CELLSIZEX")
cell_size=cell_size_x.getOutput(0)
value_type=arcpy.GetRasterProperties_management(tif_file_path,"VALUETYPE")
describe=arcpy.Describe(tif_file_path)
spatial_reference=describe.spatialReference

arcpy.CreateRasterDataset_management(out_file_path,out_file_name,cell_size,"16_BIT_SIGNED",
                                     spatial_reference,"1")

out_file=out_file_path+out_file_name
for file in file_name_list:
    file_path_name=file_path+file
    print(file_path_name)
    arcpy.Mosaic_management([file_path_name],out_file)

  其中,file_path为存放有多景初始遥感影像的路径格式为.tif栅格文件(如果不是.tif格式,例如是.hdf等文件,需首先进行文件格式的转换);out_file_path为拼接后所得结果栅格图层的存放路径;out_file_name为拼接后所得结果栅格图层的文件名称,其可选格式有很多,如下图所示。

Python arcpy创建栅格、批量拼接栅格

  在这里,我们默认所得拼接结果图层为一个(也就是file_path文件夹中全部的待处理遥感影像最终全拼接在一起);如果大家需要使得拼接结果图层是多幅(也就是file_path文件夹中待处理遥感影像依据区域、时间等分为很多不同的部分,每一部分拼接在一起),可以参考Python GDAL读取栅格数据并基于质量评估波段QA对指定数据加以筛选掩膜,利用其中的循环方式实现需求。

  随后,通过os.listdir()函数获取file_path路径下的栅格文件,并存储于file_name_list列表中。

  接下来需要创建一个新的栅格图层。之所以要进行这一步骤,是因为本文后期选择用arcpy.Mosaic_management()函数进行栅格的批量拼接,因此需要首先创建一个新的、空的栅格图层作为拼接的基准。如果大家的需求不是批量拼接栅格数据,而是单纯想利用arcpy进行新栅格的创建,那就只看这一部分的代码即可。

  在这里,我们选择用file_path路径下的第一个栅格数据(下称“第一栅格”)作为新栅格图层中各项属性(例如像素边长、像素数据格式等)的依据。首先,arcpy.GetRasterProperties_management()函数获取第一栅格的像素x边边长;因为一般栅格数据中像素都是正方形,因此我们就通过cell_size=cell_size_x.getOutput(0)将第一栅格的像素x边边长作为新栅格图层像素x边与y边二者的边长。再利用arcpy.GetRasterProperties_management()函数获取第一栅格的数据格式;最后利用中间变量describe获取第一栅格的空间参考信息。

  完成以上步骤后,将已获取的第一栅格的各类信息通过函数arcpy.CreateRasterDataset_management()带入新栅格中。在这里需要注意:尽可能在将要拼接时选择新栅格"16_BIT_SIGNED"及以下的数据格式(具体数据格式类别如下图),且将file_path路径下待拼接的栅格数据的数据格式也全部修改为这一格式;否则可能会由于数据量大而导致拼接过程极慢。我之前就是由于选用了32 bit float格式的栅格数据进行拼接,导致全球范围的MODIS一个植被产品数据拼接花了将近一天的时间。如果大家的栅格像素数据包含小数,可以通过乘上一个缩放系数的方式进行数据整数化。

Python arcpy创建栅格、批量拼接栅格

  代码最后的一个for循环,就是遍历file_name_list中的各个栅格数据,并通过arcpy.Mosaic_management()函数加以拼接即可。

  以上,便完成了本次批量拼接的操作。这里还有一点需要注意:由于arcpy模块的限制,如果大家的Python版本是3.0及以上,往往不能直接运行上述代码,最好是在ArcMap的Python运行框或其对应IDLE(如下图所示)中运行。

Python arcpy创建栅格、批量拼接栅格

  至此,大功告成。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python arcpy创建栅格、批量拼接栅格 - Python技术站

(0)
上一篇 2023年3月31日 下午8:44
下一篇 2023年3月31日 下午8:44

相关文章

  • Python核对遥感影像批量下载情况的方法

      本文介绍批量下载遥感影像时,利用Python实现已下载影像文件的核对,并自动生成未下载影像的下载链接列表的方法。   批量下载大量遥感影像数据对于GIS学生与从业人员可谓十分常见。然而,对于动辄成千上万景的遥感影像文件,下载过程中可能会出现各类失败问题,且或许在下载软件或工具中还不能很好显示失败的文件有哪些(这一点在批量下载MODIS产品时显得尤为突出,…

    Python开发 2023年3月31日
    00
  • Python实现随机森林RF并对比自变量的重要性

      本文介绍在Python环境中,实现随机森林(Random Forest,RF)回归与各自变量重要性分析与排序的过程。   其中,关于基于MATLAB实现同样过程的代码与实战,大家可以点击查看MATLAB实现随机森林(RF)回归与自变量影响程度分析这篇文章。   本文分为两部分,第一部分为代码的分段讲解,第二部分为完整代码。 1 代码分段讲解 1.1 模块…

    Python开发 2023年3月31日
    00
  • Python GDAL库在Anaconda环境中的配置

      本文介绍在Anaconda环境下,安装Python中栅格、矢量等地理数据处理库GDAL的方法。   需要注意的是,本文介绍基于conda install命令直接联网安装GDAL库的方法;这一方法有时不太稳定,且速度较慢。因此,如果有需要,大家可以参考Anaconda环境GDAL库基于whl文件的配置方法这篇文章中的方法,可以更快速地配置GDAL库。   …

    python 2023年4月18日
    00
  • Python导入Excel表格数据并以字典dict格式保存

      本文介绍基于Python语言,将一个Excel表格文件中的数据导入到Python中,并将其通过字典格式来存储的方法。   我们以如下所示的一个表格(.xlsx格式)作为简单的示例。其中,表格共有两列,第一列为学号,第二列为姓名,且每一行的学号都不重复;同时表格的第一行为表头。   假设我们需要将第一列的学号数据作为字典的键,而第二列姓名数据作为字典的值。…

    Python开发 2023年3月31日
    00
  • Python修改柱状图边缘柱子与图边界的距离

      本文介绍基于Python中matplotlib.pyplot模块,修改柱状图、条形图最两侧的柱子与图像边缘之间距离的方法。   最近,绘制了一个水平的柱状图,但是发现图的上、下边距(不是柱子与柱子相互之间的间距,而是最上方与最下方柱子各自与图边缘的距离)相对较大,非常影响美观。同时需要说明的是,本文这里的柱状图纵坐标变量是代表变量名称的不同的字符串,而不…

    Python开发 2023年3月31日
    00
  • Python实现类别变量的独热编码(One-hot Encoding)

      本文介绍基于Python下OneHotEncoder与pd.get_dummies两种方法,实现机器学习中最优的编码方法——独热编码的方法。 目录 1 OneHotEncoder 2 pd.get_dummies   在数据处理与分析领域,对数值型与字符型类别变量加以编码是不可或缺的预处理操作;这里介绍两种不同的方法。 1 OneHotEncoder  …

    Python开发 2023年3月31日
    00
  • 多变量两两相互关系联合分布图的Python绘制

      本文介绍基于Python中seaborn模块,实现联合分布图绘制的方法。   联合分布(Joint Distribution)图是一种查看两个或两个以上变量之间两两相互关系的可视化图,在数据分析操作中经常需要用到。一幅好看的联合分布图可以使得我们的数据分析更加具有可视性,让大家眼前一亮。   那么,本文就将用seaborn来实现联合分布图的绘制。seab…

    Python开发 2023年3月31日
    00
  • 基于遗传算法的地图四色原理绘图上色的Python代码

      本文介绍利用Python语言,实现基于遗传算法(GA)的地图四色原理着色操作。 1 任务需求   首先,我们来明确一下本文所需实现的需求。   现有一个由多个小图斑组成的矢量图层,如下图所示。   我们需要找到一种由4种颜色组成的配色方案,对该矢量图层各图斑进行着色,使得各相邻小图斑间的颜色不一致,如下图所示。   在这里,我们用到了四色定理(Four …

    Python开发 2023年3月31日
    00
合作推广
合作推广
分享本页
返回顶部