pandas-function

  • 详解pandas.fillna()(填充缺失值)函数使用方法

    pandas.fillna() 用于对缺失值进行填充,可以将缺失值替换为指定的数值或使用指定的填充规则进行填充。该函数的语法格式如下: DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None) 其中各参数的含义如下: value…

    Pandas函数大全 2023年3月22日
    00
  • 详解pandas.rename()(重命名列名)函数使用方法

    pandas.rename()是一个能够对DataFrame或Series的轴标签(即行或列的名称)进行修改的方法。它的语法如下: DataFrame.rename(index=None, columns=None, level=None, inplace=False, errors='ignore') 其中各参数的含义如下: index…

    Pandas函数大全 2023年3月22日
    00
  • 详解pandas.drop_duplicates()(删除重复值)函数使用方法

    pandas.drop_duplicates()的作用 pandas.drop_duplicates()是pandas库中的一个函数,主要用于去除数据集中的重复行。这个函数可以从任何一个DataFrame或Series对象中删除具有重复值的行,并返回一个新的DataFrame或Series,其中不包含任何重复的值。 pandas.drop_duplicate…

    Pandas函数大全 2023年3月22日
    00
  • 详解pandas.duplicated()(检测重复值)函数使用方法

    pandas.duplicated()是Pandas库中的一个函数,用于查找和标记重复值。它返回一个布尔值的数组,指示每个元素是否为重复项。 使用方法 语法: pandas.duplicated(subset=None, keep=’first’) 参数: subset: 可选,用于标识重复项的列名或列名列表。默认情况下,它比较整个行。 keep: 可选,标…

    Pandas函数大全 2023年3月22日
    00
  • 详解pandas.map()(映射数值)函数使用方法

    pandas.map()函数是对Series中的每个元素执行相同的映射/转换操作的方法,其主要作用是对Series中的每个元素进行映射转换,返回一个新的Series对象。 pandas.map()函数的语法如下: DataFrame.map(arg, na_action=None) 其中,参数arg可以是一个函数、字典或Series,用来指定转换方法。na_…

    Pandas函数大全 2023年3月22日
    00
  • 详解pandas.str.contains()(检测字符串包含)函数使用方法

    pandas.str.contains()函数是pandas库中的一个字符串匹配函数,用于在Series和DataFrame对象中通过正则表达式匹配来查找和筛选符合条件的字符串。该函数的详细用法和示例如下: 语法 pandas.str.contains(pat, case=True, flags=0, na=None, regex=True) 参数 pat:…

    Pandas函数大全 2023年3月22日
    00
  • 详解pandas.to_datetime()(转换为日期时间格式)函数使用方法

    pandas.to_datetime()是pandas模块中的一个函数,作用是将传入的字符串解析成时间序列类型的数据。该函数可以将多种形式的字符串,如ISO8601、 Unix Epoch时间戳、dateutil.parser解析的任意格式字符串等,转化为pandas日期时间格式。 使用方法 pandas.to_datetime(arg, errors=’r…

    Pandas函数大全 2023年3月22日
    00
  • 详解pandas.DataFrame.drop_duplicates()(删除重复行)函数使用方法

    pandas.DataFrame.drop_duplicates() 是 pandas 中常用的数据清洗方法,用于从 DataFrame 中删除重复行。 具体作用是去除 DataFrame 中重复的行,并返回去除后的新 DataFrame。同时,它还可以指定哪些列用于判断重复行,以及判断重复行时的行为。 使用方法: pandas.DataFrame.drop…

    Pandas函数大全 2023年3月22日
    00
合作推广
合作推广
分享本页
返回顶部