机器学习
-
机器学习中的train valid test以及交叉验证
参考博客:http://blog.csdn.net/u010167269/article/details/51340070 在以前的网络训练中,有关于验证集一直比较疑惑,在一些机器学习的教程中,都会提到,将数据集分为三部分,即训练集,验证集与测试集,但是由于工作中涉及到的都是神经网络的训练,大部分的情况是将数据集分为train以及test两部分,直接用tra…
-
机器学习中的正负样本
对于机器学习中的正负样本问题,之前思考过一次,但是后来又有些迷惑,又看了些网上的总结,记录在这里。 我们经常涉及到的任务有检测以及分类。 针对与分类问题,正样本则是我们想要正确分类出的类别所对应的样本,例如,我们要对一张图片进行分类,以确定其是否属于汽车,那么在训练的时候,汽车的图片则为正样本,负样本原则上可以选取任何不是汽车的其他图片,这样就可以训练出来一…
-
基于 WeDataSphere Prophecis 与 KubeSphere 构建云原生机器学习平台
KubeSphere 开源社区的小伙伴们,大家好。我是微众银行大数据平台的工程师周可,接下来给大家分享的是基于 WeDataSphere 和 KubeSphere 这两个开源社区的产品去构建一个云原生机器学习平台 Prophecis。 Prophecis 是什么? 首先我介绍一下什么是 Prophecis (Prophecy In WeDataSphere)…
-
100天搞定机器学习|Day9-12 支持向量机
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|Day7 K-NN 100天搞定机器学习|Day8 逻辑回归的数学原理 第九天直观了解SVM是什么以及如何使用它来解决分类问题 支持向量机(suppo…
-
100天搞定机器学习|Day8 逻辑回归的数学原理
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|Day7 K-NN Day7,我们学习了K最近邻算法(k-NN),了解了其定义,如何工作,介绍了集中常用的距离和k值选择。Day8,作者转回之前的逻辑回归内容,…
-
100天搞定机器学习|Day3多元线性回归
前情回顾[第二天100天搞定机器学习|Day2简单线性回归分析][1],我们学习了简单线性回归分析,这个模型非常简单,很容易理解。实现方式是sklearn中的LinearRegression,我们也学习了LinearRegression的四个参数,fit_intercept、normalize、copy_X、n_jobs。然后介绍了LinearRegress…
-
100天搞定机器学习|Day4-6 逻辑回归
逻辑回归avik-jain介绍的不是特别详细,下面再唠叨一遍这个算法。 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1。假设我们有一个特征X,画出散点图,结果如下所示。这时候如果我们用线性回归去拟合一条直线:hθ(X) = θ0+θ1X,若Y≥0.5则判断为1,否则为0。这样我们也可…
-
100天搞定机器学习|Day13-14 SVM的实现
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|Day7 K-NN 100天搞定机器学习|Day8 逻辑回归的数学原理 100天搞定机器学习|Day9-12 支持向量机 100天搞定机器学习|Day11 实现K…
-
从NIPS2014大会看机器学习新趋势
本文译自:Machine Learning Trends fromNIPS 2014 编者按:John Platt是微软的杰出科学家,也是微软在机器学习领域的领军人物。加入微软17年,一直在机器学习领域埋首耕耘。Platt也是SVM最快的加速算法SMO的提出者。NIPS大会是机器学习领域两大重要学习会议之一,另外一个是ICML。接下来的文章中Platt将和…
-
如何学习机器学习的一点心得
以下内容转自:http://blog.csdn.net/lcjpure/article/details/8069704 结合自己的学习经历,总结一下如何学习机器学习。我自己的学习过程其实是非常混乱和痛苦的,一个人瞎搞现在也不知道入没入门。希望能对其他想自学机器学习而找不到方向的人有一点点帮助。 一、可以读读一些科普性的,综述性的东西。 南京大学周志华教授写的…