tensorflow 1.X迁移至tensorflow2 的代码写法

下面是关于“tensorflow 1.X迁移至tensorflow2的代码写法”的完整攻略。

问题描述

随着TensorFlow的不断更新,许多使用TensorFlow 1.X的项目需要迁移到TensorFlow 2。那么,在迁移过程中,如何修改代码以适应TensorFlow 2?

解决方法

示例1:在TensorFlow 2中使用tf.keras替代tf.contrib

以下是在TensorFlow 2中使用tf.keras替代tf.contrib的示例:

  1. 首先,导入必要的库:

python
import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model

  1. 然后,定义模型:

```python
class MyModel(Model):
def init(self):
super(MyModel, self).init()
self.conv1 = Conv2D(32, 3, activation='relu')
self.flatten = Flatten()
self.d1 = Dense(128, activation='relu')
self.d2 = Dense(10, activation='softmax')

   def call(self, x):
       x = self.conv1(x)
       x = self.flatten(x)
       x = self.d1(x)
       return self.d2(x)

model = MyModel()
```

在上面的示例中,我们使用了tf.keras替代了tf.contrib。首先,我们导入了必要的库,并定义了一个继承自tf.keras.Model的模型类。然后,我们在模型类中定义了卷积层、全连接层等层,并在call方法中定义了模型的前向传播过程。最后,我们实例化了模型类。

示例2:在TensorFlow 2中使用tf.data替代tf.train

以下是在TensorFlow 2中使用tf.data替代tf.train的示例:

  1. 首先,导入必要的库:

python
import tensorflow as tf

  1. 然后,加载数据集并进行数据预处理:

```python
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
```

  1. 接着,定义模型并进行训练:

```python
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

model.fit(train_ds, epochs=5, validation_data=test_ds)
```

在上面的示例中,我们使用了tf.data替代了tf.train。首先,我们加载了MNIST数据集并进行了数据预处理。然后,我们使用tf.data.Dataset.from_tensor_slices方法将数据集转换为tf.data.Dataset格式,并进行了shuffle和batch操作。最后,我们定义了一个简单的模型,并使用tf.data.Dataset格式的数据集进行训练。

结论

在本攻略中,我们介绍了在TensorFlow 2中使用tf.keras替代tf.contrib和使用tf.data替代tf.train的方法,并提供了两个示例说明。可以根据具体的需求来选择不同的方法,并根据需要调整模型、数据集和超参数。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:tensorflow 1.X迁移至tensorflow2 的代码写法 - Python技术站

(0)
上一篇 2023年5月16日
下一篇 2023年5月16日

相关文章

  • 【tf.keras】ssl.SSLError: [SSL: DECRYPTION_FAILED_OR_BAD_RECORD_MAC] decryption failed or bad record mac (_ssl.c:1977)

    问题描述 tf.keras 在加载 cifar10 数据时报错,ssl.SSLError: [SSL: DECRYPTION_FAILED_OR_BAD_RECORD_MAC] decryption failed or bad record mac (_ssl.c:1977) import tensorflow as tf cifar10 = tf.kera…

    Keras 2023年4月8日
    00
  • Tensorflow_08A_Keras 助攻下的 Sequential 模型

    Brief 概述 使用 keras 搭建模型时让人们感受到的简洁性与设计者的用心非常直观的能够在过程中留下深刻的印象,这个模块帮可以让呈现出来的代码极为人性化且一目了然,使用 Tensorflow 模块搭建神经网络模型通常需要百行的代码,自定义模型和函数,唯一受到 tf 封装的厉害功能只有梯度下降的自动取极值,如果是一个初出入门的人,没有一定的基础背景累积,…

    2023年4月8日
    00
  • keras使用多进程

    最近在工作中有一个需求:用训练好的模型将数据库中所有数据得出预测结果,并保存到另一张表上。数据库中的数据是一篇篇文章,我训练好的模型是对其中的四个段落分别分类,即我有四个模型,拿到文本后需要提取出这四个段落,并用对应模型分别预测这四个段落的类别,然后存入数据库中。我是用keras训练的模型,backend为tensorflow,因为数据量比较大,自然想到用多…

    Keras 2023年4月8日
    00
  • keras BatchNormalization 之坑

    任务简述:最近做一个图像分类的任务, 一开始拿vgg跑一个baseline,输出看起来很正常:     随后,我尝试其他的一些经典的模型架构,比如resnet50, xception,但训练输出显示明显异常:   val_loss 一直乱蹦,val_acc基本不发生变化。 检查了输入数据没发现问题,因此怀疑是网络构造有问题, 对比了vgg同xception,…

    2023年4月8日
    00
  • [Keras 模型训练] Thread Safe Generator

            最近,在玩语义分割的模型。利用GPU训练的时候,每次跑几个epochs之后,程序崩溃,输出我说我的generator不是线程安全的。查看 trace back发现model.fit_generator在调用自己写的generator出现问题,需要将自己的generator写成线程安全的。          参考keras的#1638 issu…

    2023年4月8日
    00
  • python+keras实现语音识别

    科大讯飞:https://www.iflytek.com/ 版权声明:本文为CSDN博主「南方朗郎」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/sunshuai_coder/article/details/83658625 仅做笔记,未实验 市面上语音识别技术原理…

    2023年4月8日
    00
  • Keras 使用自己编写的数据生成器

    使用自己编写的数据生成器,配合keras的fit_generator训练模型 注意:模型结构要和生成器生成数据的尺寸要对应,txt存的数据路径一般是有序的,想办法打乱它 # 以下部分代码,仅做示意 …… def gen_mine(): txtpath = ‘./2.txt’ # 数据路径存在txt data_train = [] data_labels = …

    Keras 2023年4月6日
    00
  • keras训练函数fit和fit_generator对比,图像生成器ImageDataGenerator数据增强

    1. [深度学习] Keras 如何使用fit和fit_generator https://blog.csdn.net/zwqjoy/article/details/88356094 ps:解决样本数量不均衡:fit_generator中设置参数class_weight = ‘auto’ 2. 实现批量数据增强 | keras ImageDataGenera…

    Keras 2023年4月6日
    00
合作推广
合作推广
分享本页
返回顶部