Pytorch实验常用代码段汇总

当进行PyTorch实验时,我们经常需要使用一些常用的代码段来完成模型训练、数据处理、可视化等任务。本文将详细讲解PyTorch实验常用代码段汇总,并提供两个示例说明。

1. 模型训练

在PyTorch中,我们可以使用torch.optim模块中的优化器和nn模块中的损失函数来训练模型。以下是模型训练的示例代码:

import torch
import torch.nn as nn
import torch.optim as optim

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.fc2 = nn.Linear(5, 2)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 实例化模型、损失函数和优化器
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 训练模型
for epoch in range(10):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
    print('Epoch %d loss: %.3f' % (epoch + 1, running_loss / len(trainloader)))

在上面的代码中,我们首先定义了一个包含两个全连接层的模型Net。然后,我们实例化了该模型、损失函数和优化器。接下来,我们使用for循环训练模型,其中每个epoch包含多个batch。在每个batch中,我们首先将优化器的梯度清零,然后计算模型的输出和损失,并使用反向传播更新模型参数。最后,我们输出每个epoch的平均损失。

2. 数据处理

在PyTorch中,我们可以使用torch.utils.data模块中的Dataset和DataLoader来处理数据。以下是数据处理的示例代码:

import torch
import torchvision
import torchvision.transforms as transforms

# 定义数据增强和标准化
transform = transforms.Compose(
    [transforms.RandomHorizontalFlip(),
     transforms.RandomCrop(32, padding=4),
     transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# 加载CIFAR10数据集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

# 输出数据集大小
print('Trainset size:', len(trainset))

# 输出数据集类别
classes = trainset.classes
print('Classes:', classes)

在上面的代码中,我们首先定义了数据增强和标准化的方法,并使用transforms.Compose()方法将它们组合起来。然后,我们使用torchvision.datasets模块中的CIFAR10()方法加载CIFAR10数据集,并使用torch.utils.data模块中的DataLoader()方法将数据集转换为可迭代的数据加载器。接下来,我们输出了数据集的大小和类别。

3. 示例3:模型保存和加载

在PyTorch中,我们可以使用torch.save()方法将模型保存到文件中,并使用torch.load()方法从文件中加载模型。以下是模型保存和加载的示例代码:

import torch
import torch.nn as nn

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.fc2 = nn.Linear(5, 2)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 实例化模型
net = Net()

# 保存模型
torch.save(net.state_dict(), 'model.pth')

# 加载模型
net.load_state_dict(torch.load('model.pth'))

在上面的代码中,我们首先定义了一个包含两个全连接层的模型Net,并实例化了该模型。然后,我们使用torch.save()方法将模型的参数保存到文件model.pth中。接下来,我们使用torch.load()方法从文件中加载模型的参数,并使用net.load_state_dict()方法将参数加载到模型中。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pytorch实验常用代码段汇总 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • PyTorch中torch.utils.data.Dataset的介绍与实战

    在PyTorch中,torch.utils.data.Dataset是一个抽象类,用于表示数据集。本文将介绍torch.utils.data.Dataset的基本用法,并提供两个示例说明。 基本用法 要使用torch.utils.data.Dataset,您需要创建一个自定义数据集类,并实现以下两个方法: len():返回数据集的大小。 getitem():…

    PyTorch 2023年5月15日
    00
  • Pytorch Tensor 维度的扩充和压缩

    维度扩展 x.unsqueeze(n) 在 n 号位置添加一个维度 例子: import torch x = torch.rand(3,2) x1 = x.unsqueeze(0) # 在第一维的位置添加一个维度 x2 = x.unsqueeze(1) # 在第二维的位置添加一个维度 x3 = x.unsqueeze(2) # 在第三维的位置添加一个维度 p…

    PyTorch 2023年4月8日
    00
  • windows环境 pip离线安装pytorch-gpu版本总结(没用anaconda)

    1.确定你自己的环境信息。 我的环境是:win8+cuda8.0+python3.6.5 各位一定要根据python版本和cuDa版本去官网查看所对应的.whl文件再下载! 2.去官网查看环境匹配的torch、torchversion版本信息,然后去镜像源下载对应的文件 (直接去官网下载会出现中断的情况,如果去官网下载建议尝试迅雷下载)或者镜像网站下载对应的…

    PyTorch 2023年4月7日
    00
  • pytorch实现回归任务

    完整代码: import torch import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt import torch.optim as optim #生成数据 #随机取100个-1到1之间的数,利用unsqueez…

    PyTorch 2023年4月7日
    00
  • PyTorch实现多维度特征输入逻辑回归

    PyTorch实现多维度特征输入逻辑回归 在PyTorch中,逻辑回归是一种用于二分类问题的机器学习算法。在本文中,我们将介绍如何使用PyTorch实现多维度特征输入逻辑回归,并提供两个示例说明。 示例1:使用PyTorch实现二分类逻辑回归 以下是一个使用PyTorch实现二分类逻辑回归的示例代码: import torch import torch.nn…

    PyTorch 2023年5月16日
    00
  • pytorch实现好莱坞明星识别的示例代码

    好莱坞明星识别是一个常见的计算机视觉问题,可以使用PyTorch实现。在本文中,我们将介绍如何使用PyTorch实现好莱坞明星识别,并提供两个示例说明。 示例一:使用PyTorch实现好莱坞明星识别 我们可以使用PyTorch实现好莱坞明星识别。示例代码如下: import torch import torch.nn as nn import torch.o…

    PyTorch 2023年5月15日
    00
  • pytorch部署到jupyter中的问题及解决方案

    PyTorch部署到Jupyter中的问题及解决方案 在使用PyTorch进行深度学习开发时,我们通常会使用Jupyter Notebook进行代码编写和调试。然而,在将PyTorch部署到Jupyter中时,可能会遇到一些问题。本文将介绍一些常见的问题及其解决方案,并演示两个示例。 示例一:PyTorch无法在Jupyter中使用GPU 在Jupyter中…

    PyTorch 2023年5月15日
    00
  • PyTorch 之 Datasets

    实现一个定制的 Dataset 类 Dataset 类是 PyTorch 图像数据集中最为重要的一个类,也是 PyTorch 中所有数据集加载类中应该继承的父类。其中,父类的两个私有成员函数必须被重载。 getitem(self, index) # 支持数据集索引的函数 len(self) # 返回数据集的大小 Datasets 的框架: class Cus…

    PyTorch 2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部