Pytorch实验常用代码段汇总

当进行PyTorch实验时,我们经常需要使用一些常用的代码段来完成模型训练、数据处理、可视化等任务。本文将详细讲解PyTorch实验常用代码段汇总,并提供两个示例说明。

1. 模型训练

在PyTorch中,我们可以使用torch.optim模块中的优化器和nn模块中的损失函数来训练模型。以下是模型训练的示例代码:

import torch
import torch.nn as nn
import torch.optim as optim

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.fc2 = nn.Linear(5, 2)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 实例化模型、损失函数和优化器
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 训练模型
for epoch in range(10):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
    print('Epoch %d loss: %.3f' % (epoch + 1, running_loss / len(trainloader)))

在上面的代码中,我们首先定义了一个包含两个全连接层的模型Net。然后,我们实例化了该模型、损失函数和优化器。接下来,我们使用for循环训练模型,其中每个epoch包含多个batch。在每个batch中,我们首先将优化器的梯度清零,然后计算模型的输出和损失,并使用反向传播更新模型参数。最后,我们输出每个epoch的平均损失。

2. 数据处理

在PyTorch中,我们可以使用torch.utils.data模块中的Dataset和DataLoader来处理数据。以下是数据处理的示例代码:

import torch
import torchvision
import torchvision.transforms as transforms

# 定义数据增强和标准化
transform = transforms.Compose(
    [transforms.RandomHorizontalFlip(),
     transforms.RandomCrop(32, padding=4),
     transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# 加载CIFAR10数据集
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

# 输出数据集大小
print('Trainset size:', len(trainset))

# 输出数据集类别
classes = trainset.classes
print('Classes:', classes)

在上面的代码中,我们首先定义了数据增强和标准化的方法,并使用transforms.Compose()方法将它们组合起来。然后,我们使用torchvision.datasets模块中的CIFAR10()方法加载CIFAR10数据集,并使用torch.utils.data模块中的DataLoader()方法将数据集转换为可迭代的数据加载器。接下来,我们输出了数据集的大小和类别。

3. 示例3:模型保存和加载

在PyTorch中,我们可以使用torch.save()方法将模型保存到文件中,并使用torch.load()方法从文件中加载模型。以下是模型保存和加载的示例代码:

import torch
import torch.nn as nn

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(10, 5)
        self.fc2 = nn.Linear(5, 2)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

# 实例化模型
net = Net()

# 保存模型
torch.save(net.state_dict(), 'model.pth')

# 加载模型
net.load_state_dict(torch.load('model.pth'))

在上面的代码中,我们首先定义了一个包含两个全连接层的模型Net,并实例化了该模型。然后,我们使用torch.save()方法将模型的参数保存到文件model.pth中。接下来,我们使用torch.load()方法从文件中加载模型的参数,并使用net.load_state_dict()方法将参数加载到模型中。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pytorch实验常用代码段汇总 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • Pytorch半精度浮点型网络训练问题

    用Pytorch1.0进行半精度浮点型网络训练需要注意下问题: 1、网络要在GPU上跑,模型和输入样本数据都要cuda().half() 2、模型参数转换为half型,不必索引到每层,直接model.cuda().half()即可 3、对于半精度模型,优化算法,Adam我在使用过程中,在某些参数的梯度为0的时候,更新权重后,梯度为零的权重变成了NAN,这非常…

    PyTorch 2023年4月8日
    00
  • 关于Pytorch报警告:Warning: indexing with dtype torch.uint8 is now deprecated, please use a dtype torch.bool instead

    在使用Pytorch的时候,遇到警告的日志打印: [W IndexingUtils.h:20] Warning: indexing with dtype torch.uint8 is now deprecated, please use a dtype torch.bool instead. (function expandTensors)[W ..aten…

    2023年4月6日
    00
  • 动手学深度学习PyTorch版-task04

    课后习题 task0402.注意力机制与Seq2seq模型 不同的attetion layer的区别在于score函数的选择,在本节的其余部分,我们将讨论两个常用的注意层 Dot-product Attention 和 Multilayer Perceptron Attention;随后我们将实现一个引入attention的seq2seq模型并在英法翻译语料…

    2023年4月8日
    00
  • requires_grad_()与requires_grad的区别,同时pytorch的自动求导(AutoGrad)

    1. 所有的tensor都有.requires_grad属性,可以设置这个属性.     x = tensor.ones(2,4,requires_grad=True) 2.如果想改变这个属性,就调用tensor.requires_grad_()方法:    x.requires_grad_(False) 3.自动求导注意点:   (1)  要想使x支持求导…

    PyTorch 2023年4月6日
    00
  • pytorch 读取和保存模型参数

    只保存参数信息 加载 checkpoint = torch.load(opt.resume) model.load_state_dict(checkpoint) 保存 torch.save(self.state_dict(),file_path) 这而只保存了参数信息,读取时也只有参数信息,模型结构需要手动编写 保存整个模型 保存torch.save(the…

    PyTorch 2023年4月8日
    00
  • pytorch torchversion自带的数据集

        from torchvision.datasets import MNIST # import torchvision # torchvision.datasets. #准备数据集 mnist = MNIST(root=”./mnist”,train=True,download=True) print(mnist) mnist[0][0].show(…

    2023年4月8日
    00
  • pytorch自定义不可导激活函数的操作

    在PyTorch中,我们可以使用自定义函数来实现不可导的激活函数。以下是实现自定义不可导激活函数的完整攻略: 步骤1:定义自定义函数 首先,我们需要定义自定义函数。在这个例子中,我们将使用ReLU函数的变体,称为LeakyReLU函数。LeakyReLU函数在输入小于0时不是完全不可导的,而是有一个小的斜率。以下是LeakyReLU函数的定义: import…

    PyTorch 2023年5月15日
    00
  • ubuntu tensorflow 和 pytorch 启动

    1. 首先查看是否安装库,执行如下命令: 1 conda info –envs 2. 如果有,进行TensorFlow启动,执行如下命令: 1 source activate tf #这里的tf是1中命令执行完后的包的名称 3. 执行Python,在执行import,命令如下: 1 Python 2 import tf 效果如下:        4. py…

    2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部