TensorFlow神经网络学习之张量与变量概念

TensorFlow神经网络学习之张量与变量概念

TensorFlow是一个流行的机器学习框架,它使用张量和变量来表示数据和模型参数。本攻略将介绍TensorFlow中的张量和变量概念,并提供两个示例。

张量

张量是TensorFlow中的基本数据类型,它可以表示标量、向量、矩阵和更高维度的数组。以下是一些常见的张量:

  • 标量:只有一个元素的张量。
  • 向量:一维数组。
  • 矩阵:二维数组。
  • 三维张量:三维数组。
  • 更高维度的张量:可以有任意数量的维度。

在TensorFlow中,张量可以使用tf.Tensor类来表示。以下是一个示例:

import tensorflow as tf

# 创建一个标量
a = tf.constant(1)

# 创建一个向量
b = tf.constant([1, 2, 3])

# 创建一个矩阵
c = tf.constant([[1, 2], [3, 4]])

# 创建一个三维张量
d = tf.constant([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

在这个示例中,我们使用tf.constant函数创建了不同维度的张量。

变量

变量是TensorFlow中的另一个重要概念,它可以用来表示模型参数。在TensorFlow中,变量可以使用tf.Variable类来表示。以下是一个示例:

import tensorflow as tf

# 创建一个变量
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

在这个示例中,我们使用tf.Variable函数创建了两个变量W和b。

示例1:使用张量进行简单的线性回归

以下是示例步骤:

  1. 导入必要的库。

python
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

  1. 准备数据。

python
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3

  1. 定义模型。

python
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

  1. 训练模型。

python
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(W), sess.run(b))

  1. 绘制结果。

python
plt.plot(x_data, y_data, 'ro', label='Original data')
plt.plot(x_data, sess.run(W) * x_data + sess.run(b), label='Fitted line')
plt.legend()
plt.show()

在这个示例中,我们演示了如何使用张量进行简单的线性回归。

示例2:使用变量进行手写数字识别

以下是示例步骤:

  1. 导入必要的库。

python
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

  1. 准备数据。

python
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

  1. 定义模型。

python
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

  1. 训练模型。

python
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

在这个示例中,我们演示了如何使用变量进行手写数字识别。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:TensorFlow神经网络学习之张量与变量概念 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • 编写Python脚本把sqlAlchemy对象转换成dict的教程

    下面是编写Python脚本把sqlAlchemy对象转换成dict的详细教程。 1. 安装必要的依赖 在进行脚本编写之前,我们需要先安装必要的依赖: sqlAlchemy: 用于操作数据库 Marshmallow: 用于序列化和反序列化 你可以通过pip安装这两个依赖: pip install sqlalchemy marshmallow 2. 定义sqlA…

    tensorflow 2023年5月18日
    00
  • 详解tensorflow2.x版本无法调用gpu的一种解决方法

    在使用TensorFlow 2.x版本进行深度学习模型训练时,有时会遇到无法调用GPU的问题。本文将提供一个完整的攻略,详细讲解一种解决方法,并提供两个示例说明。 解决方法 解决TensorFlow 2.x版本无法调用GPU的问题,可以尝试以下方法: 确认CUDA和cuDNN是否正确安装。在使用GPU进行深度学习模型训练时,需要安装CUDA和cuDNN。确保…

    tensorflow 2023年5月16日
    00
  • TensorFlow的图像NCHW与NHWC

        import tensorflow as tf x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] with tf.Session() as sess: a = tf.reshape(x, [2, 2, 3]) a = sess.run(a) print(a) print(“——————–…

    2023年4月8日
    00
  • 转载:Failed to load the native TensorFlow runtime解决方法

    https://www.jianshu.com/p/4115338fba2d

    tensorflow 2023年4月8日
    00
  • tensorflow如何继续训练之前保存的模型实例

    在TensorFlow中,我们可以使用tf.keras.models.load_model()方法加载之前保存的模型实例,并使用model.fit()方法继续训练模型。本文将详细讲解TensorFlow如何继续训练之前保存的模型实例的方法,并提供两个示例说明。 示例1:加载之前保存的模型实例并继续训练 以下是加载之前保存的模型实例并继续训练的示例代码: im…

    tensorflow 2023年5月16日
    00
  • tensorflow能做什么项目?

    TensorFlow是一个强大的开源机器学习框架,它可以用于各种不同类型的项目,从图像处理到自然语言处理到数据分析和预测。在本文中,我们将探讨TensorFlow的几个主要用途,以及如何使用TensorFlow在每个领域中开展项目。 图像分类和物体识别 图像分类和物体识别是TensorFlow的一个主要应用领域。TensorFlow可以用于训练模型,对图像进…

    2023年2月22日 TensorFlow
    00
  • TensorFlow入门之MNIST最佳实践

    在上一篇《TensorFlow入门之MNIST样例代码分析》中,我们讲解了如果来用一个三层全连接网络实现手写数字识别。但是在实际运用中我们需要更有效率,更加灵活的代码。在TensorFlow实战这本书中给出了更好的实现,他将程序分为三个模块,分别是前向传播过程模块,训练模块和验证检测模块。并且在这个版本中添加了模型持久化功能,我们可以将模型保存下来,方便之后…

    tensorflow 2023年4月8日
    00
  • Tensorflow暑期实践——DeepDream以背景图片为起点

    浙江财经大学专业实践深度学习tensorflow——阳诚砖 tensorflow_inception_graph.pb https://pan.baidu.com/s/1IbgQFAuqnGNjRQJGKDDOiA 提取码:2670 1.1 导入库与Inception模型 from __future__ import print_function impor…

    2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部