TensorFlow神经网络学习之张量与变量概念

TensorFlow神经网络学习之张量与变量概念

TensorFlow是一个流行的机器学习框架,它使用张量和变量来表示数据和模型参数。本攻略将介绍TensorFlow中的张量和变量概念,并提供两个示例。

张量

张量是TensorFlow中的基本数据类型,它可以表示标量、向量、矩阵和更高维度的数组。以下是一些常见的张量:

  • 标量:只有一个元素的张量。
  • 向量:一维数组。
  • 矩阵:二维数组。
  • 三维张量:三维数组。
  • 更高维度的张量:可以有任意数量的维度。

在TensorFlow中,张量可以使用tf.Tensor类来表示。以下是一个示例:

import tensorflow as tf

# 创建一个标量
a = tf.constant(1)

# 创建一个向量
b = tf.constant([1, 2, 3])

# 创建一个矩阵
c = tf.constant([[1, 2], [3, 4]])

# 创建一个三维张量
d = tf.constant([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

在这个示例中,我们使用tf.constant函数创建了不同维度的张量。

变量

变量是TensorFlow中的另一个重要概念,它可以用来表示模型参数。在TensorFlow中,变量可以使用tf.Variable类来表示。以下是一个示例:

import tensorflow as tf

# 创建一个变量
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

在这个示例中,我们使用tf.Variable函数创建了两个变量W和b。

示例1:使用张量进行简单的线性回归

以下是示例步骤:

  1. 导入必要的库。

python
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

  1. 准备数据。

python
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data * 0.1 + 0.3

  1. 定义模型。

python
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

  1. 训练模型。

python
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for step in range(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(W), sess.run(b))

  1. 绘制结果。

python
plt.plot(x_data, y_data, 'ro', label='Original data')
plt.plot(x_data, sess.run(W) * x_data + sess.run(b), label='Fitted line')
plt.legend()
plt.show()

在这个示例中,我们演示了如何使用张量进行简单的线性回归。

示例2:使用变量进行手写数字识别

以下是示例步骤:

  1. 导入必要的库。

python
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

  1. 准备数据。

python
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

  1. 定义模型。

python
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

  1. 训练模型。

python
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

在这个示例中,我们演示了如何使用变量进行手写数字识别。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:TensorFlow神经网络学习之张量与变量概念 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • Tensorflow2.0语法 – dataset数据封装+训测验切割(二)

    训练集-测试集-验证集切割 方法1:(借用三方sklearn库) 因为sklearn的train_test_split只能切2份,所以我们需要切2次: from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split…

    tensorflow 2023年4月8日
    00
  • centos7 手把手从零搭建深度学习环境 (以TensorFlow2.0为例)

    目录 一. 搭建一套自己的深度学习平台 二. 安装系统 三. 安装NVIDA组件 四. 安装深度学习框架 TensorFlow 五. 配置远程访问 六. 验收 七. 福利(救命稻草

    tensorflow 2023年4月8日
    00
  • TensorFlow-gpu运行问题记录-windows10

    Error polling for event status: failed to query event: CUDA ERROR ILLEGAL INSTRUCTION could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR 目录 1. 运行环境配置 2. 问题 问题(1) Error poll…

    tensorflow 2023年4月7日
    00
  • 30秒轻松实现TensorFlow物体检测

    “30秒轻松实现TensorFlow物体检测”是一种基于 TensorFlow Object Detection API 的快速实现物体检测的方法。本文将详细讲解这个方法的完整攻略,并提供两个示例说明。 “30秒轻松实现TensorFlow物体检测”的完整攻略 步骤1:安装 TensorFlow Object Detection API 首先,我们需要安装 …

    tensorflow 2023年5月16日
    00
  • 依赖Anaconda环境安装TensorFlow库,避免采坑

    TensorFlow™ 简介:      TensorFlow是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务…

    2023年4月8日
    00
  • tensorflow使用指定gpu的方法

    在 TensorFlow 中,我们可以使用以下方法来指定使用哪个 GPU 进行计算。 方法1:使用环境变量 我们可以使用以下环境变量来指定使用哪个 GPU 进行计算。 export CUDA_VISIBLE_DEVICES=0 在这个示例中,我们将使用 GPU 0 进行计算。如果我们想使用多个 GPU 进行计算,可以将环境变量设置为逗号分隔的 GPU 编号列…

    tensorflow 2023年5月16日
    00
  • windows 10 下面安装tensorflow gpu版本和pycharm中使用

    windows10 下面安装tensorflow-gpu很容易,但是在pycharm中使用可能会遇到些问题,这里记录下。 1、首先需要安装anaconda,去官网下载对应的exe即可,按照默认安装,这个基本上没有什么影响。anaconda安装好在进行下面的步骤,这里anaconda安装目录需要记录一下。 2、在桌面最下角点击程序栏,找到anaconda程序下…

    2023年4月8日
    00
  • TensorFlow入门:Graph

    TensorFlow的计算都是基于图的。 如果不特殊指定,会使用系统默认图。只要定义了操作,必然会有一个图(自定义的或启动默认的)。 自定义图的方法: g=tf.Graph() 查看系统当前的图: tf.get_default_graph() 如果想讲自定义的图设置为默认图,可使用如下指令: g.as_default() 在某个图内定义变量及操作(’coll…

    tensorflow 2023年4月7日
    00
合作推广
合作推广
分享本页
返回顶部