【ACM数论】和式变换技术,也许是最好的讲解之一

yizhihongxing

在做数论题时,往往需要进行和式变换,然后变换成我们可以处理的和式,再针对和式做筛法、整除分块等操作。

本文将介绍一些常见的和式变换技术。

以下出现的概念大部分为个人总结,未必是学术界/竞赛界的统一说法,有不严谨的地方请谅解。

? 作者:Eriktse
? 简介:19岁,211计算机在读,现役ACM银牌选手?力争以通俗易懂的方式讲解算法!❤️欢迎关注我,一起交流C++/Python算法。(优质好文持续更新中……)?
? 原文链接(阅读原文获得更好阅读体验):https://www.eriktse.com/algorithm/1101.html

和式的基本形式

和式一般有两种:区间枚举型整除枚举型

区间枚举型

我们的前缀和就是一个典型的区间枚举型和式。

假设我们有一个定义域为\(x\in[1, n],x\in Z^+\)的函数\(f(x)\),那么我们可以设一个前缀和函数\(F(x)\),定义为:

\[F(x) = \sum_{i=1}^{x}f(i) = f(1) + f(2) + ... + fx()
\]

求和符号中,如果没有特殊说明,一般枚举的都是整数,且步长为1。

整除枚举型

约数个数是一个典型的整除枚举型和式,我们可以容易的写出它的表达式:

\[f(n) = \sum_{d|n}1
\]

其中 \(d|n\) 表示 \(i\) 可以整除 \(n\) ,即 \(i\)\(n\) 的因子。

约数之和也是一个整除枚举型和式,表达式如下:

\[g(n) = \sum_{d|n}d
\]

和式的基本性质

可拆分性质

第一种拆分如下:

\[\sum_{i=1}^{n}a_i = \sum_{i=1}^{m}a_i + \sum_{i=m+1}^{n}a_i
\]

这是显然的,但是基本上用不着。

第二种拆分如下:

\[\sum_{i=1}^{n}(a_i + b_i) = \sum_{i=1}^{n}a_i + \sum_{i=1}^{n}b_i
\]

这也是显然的。

常数可提取

当我们的和式里面乘上了一个常数\(k\),那么这个常数是可以提出来的,由于我们讨论的数域是整数域,这个\(k\)一般为整数。(其实对于实数也是满足条件的)。

\[\sum_{i=1}^{n}ka_i = k\sum_{i=1}^{n}a_i
\]

整除枚举型变换为区间枚举型(重要)

就比如上面那个约数之和的函数:

\[g(i) = \sum_{d|n}d = \sum_{i=1}^{n}[d|n]
\]

我们知道\(d\)的取值一定在\([1, n]\),所以我们可以转换枚举类型,此时枚举指标的范围就要改变,同时加上一个布尔函数来限定。

我们称枚举的东西为“指标”,例如上面和式中d|n中的di=1中的i

指标变换(重要)

给定一个整数\(k\),对于下面这种和式,我们可以把指标进行转换。

\[\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i, j) = k]
\]

现在令\(i = i'k,j=j'k\),为什么会这么想呢?因为我们后面的布尔函数中要求\(i, j\)都包含因子\(k\),如果枚举的\(i, j\)不是\(k\)的倍数的时候这个式子是没有贡献的。

所以我们可以不一个个枚举\(i, j\),变为枚举\(k\)的倍数。我们进行整体的代换:

\[\sum_{i'k = 1}^{n}\sum_{j'k=1}^{n}[gcd(i'k, j'k) = k]
\]

然后变换枚举范围和布尔函数,注意这里\(i\)的起点本应该是\(\lfloor\frac{1}{k}\rfloor\),但是\(0\)是没有讨论意义的所以我们从\(1\)开始。

\[\sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{k}\rfloor}[gcd(i, j) = 1]
\]

现在我们可以发现后面这个布尔函数就变成了一个常见的积性函数\(\epsilon\),接下来就可以通过公式\(\mu * I = \epsilon\)进行莫比乌斯反演(其中符号\(*\)表示狄利克雷卷积)。

交换求和次序(重要)

上式进行莫比乌斯反演后可以得到如下的和式(如果不懂莫比乌斯反演可以暂时先不管,之后再学),设\(m=\lfloor\frac{n}{k}\rfloor\)

\[\sum_{i=1}^{m}\sum_{j=1}^{m}\sum_{d|gcd(i, j)}\mu(d)
\]

我们可以发现\(d|gcd(i, j)\)这个条件等价于\([d|i][d|j]\),即\(d\)同时是\(i\)\(j\)的因子。

接下来我们进行一次枚举类型的转换:

\[\sum_{i=1}^{m}\sum_{j=1}^{m}\sum_{d=1}^{m}[d|i][d|j]\mu(d)
\]

接下来我们将\(d\)的求和符号从后面换到前面去,因为在\(\mu(d)\)中没有包含\(i, j\)的内容,可以直接换,这里需要自己理解一下。

\[\\sum_{d=1}^{m}\mu(d)\sum_{i=1}^{m}[d|i]\sum_{j=1}^{m}[d|j]
\]

转换为整除分块形式(十分重要)

上式转换完成后,我们可以发现后面两坨是可以进行整除分块的。

\[\sum_{i=1}^{m}[d|i] = \lfloor\frac{m}{d}\rfloor
\]

怎么理解呢?这个式子表达的就是当\(d\)确定了,在区间[1, n]中有多少整数是\(d\)的倍数,显然是\(\lfloor\frac{m}{d}\rfloor\)个。

那么和式就可转换为:

\[\sum_{i=1}^{m}\lfloor\frac{m}{d}\rfloor\lfloor\frac{m}{d}\rfloor
\]

例题

luogu P2257 YY的GCD:https://www.luogu.com.cn/problem/P2257

阅读题意我们可以知道题目所求为,不妨设\(n\le m\)

\[ans=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prim]
\]

接下来开始变换:

\[\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{p\in prim}[gcd(i,j)=p]
\]

\[\sum_{p\in prim}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[gcd(i,j)=1]
\]

莫比乌斯反演:

\[\sum_{p\in prim}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}\sum_{d|gcd(i,j)}\mu(d)
\]

注意这里\(n\le m\),接着变换。

\[\sum_{p\in prim}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}\sum_{d=1}^{\lfloor\frac{n}{p}\rfloor}[d|i][d|j]\mu(d)
\]

\[\sum_{p\in prim}\sum_{d=1}^{\lfloor\frac{n}{p}\rfloor}\mu(d)\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}[d|i]\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[d|j]
\]

后面两坨可以进行整除分块,同时换一下\(p\)的枚举类型:

\[\sum_{p=1}^{n}[p\in prim]\sum_{d=1}^{\lfloor\frac{n}{p}\rfloor}\mu(d)\lfloor\frac{n}{pd}\rfloor\lfloor\frac{m}{pd}\rfloor
\]

\(T=pd\),交换求和次序。

\[\sum_{p=1}^{n}[p\in prim][p|T]\sum_{T=1}^{n}\mu(\frac{T}{p})\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor
\]

再交换求和次序:

\[\sum_{T=1}^{n}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum_{p=1}^{n}[p\in prim][p|T]\mu(\frac{T}{p})
\]

现在发现\(p\)后面那一块,可以通过类似欧拉筛的方法进行预处理。

我们设一个函数:

\[F(T) = \sum_{p=1}^{n}[p \in prim][p|T]\mu(\frac{T}{p})
\]

那么\(F(T)\)的含义就是对于\(T\)的每一个质因子\(p\),将它的\(\mu(\frac{T}{p})\)加到自身上。

做完了。

Code:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e7 + 9;

int sum[N], mu[N];

void init(int n = N - 2)
{
	bitset<N> vis;
	vector<int> prim;
	vis[1] = true;
	mu[1] = 1;
	
	for(int i = 2;i <= n; ++ i)
	{
		if(!vis[i])prim.push_back(i), mu[i] = -1;
		
		for(int j = 0;j < prim.size() and i * prim[j] <= n; ++ j)
		{
			vis[i * prim[j]] = true;
			if(i % prim[j] == 0)break;//此时i * prim[j]含有平方因子
			
			mu[i * prim[j]] = -mu[i];//此时i * prim[j]的本质不同质因子+1,或已经含有平方因子
		}
	}
	
	for(int i = 0;i < prim.size(); ++ i)
	{
		for(int j = 1; prim[i] * j  <= n; ++ j)
		{
			sum[prim[i] * j] += mu[j];
		}
	}
	
	for(int i = 1;i <= n; ++ i)sum[i] += sum[i - 1];
	
}

void solve()
{
	int n, m;scanf("%lld %lld", &n, &m);
	if(n > m)swap(n, m);
	int ans = 0;
	for(int l = 1, r;l <= n; l = r + 1)
	{
		r = min(n / (n / l), m / (m / l));
		ans += (sum[r] - sum[l - 1]) * (n / l) * (m / l);
	}
	printf("%lld\n", ans);
}

signed main()
{
	init();
	int _;scanf("%lld", &_);
	while(_ --)solve();
	return 0;
}

结束

? 本文由eriktse原创,创作不易,如果对您有帮助,欢迎小伙伴们点赞?、收藏⭐、留言?

原文链接:https://www.cnblogs.com/eriktse/p/17280451.html

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:【ACM数论】和式变换技术,也许是最好的讲解之一 - Python技术站

(0)
上一篇 2023年4月17日
下一篇 2023年4月17日

相关文章

  • TypeScript 基础数据结构哈希表 HashTable教程

    TypeScript 基础数据结构哈希表 HashTable 教程 什么是哈希表 HashTable 在计算机科学中,哈希表(HashTable),也叫散列表,是根据关键码值(Key­value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。这个映射函数叫作哈希函数,存放记录的数组叫作哈希表。 如何实现哈…

    数据结构 2023年5月17日
    00
  • python决策树之C4.5算法详解

    下面是详细讲解“Python决策树之C4.5算法详解”的完整攻略,包含两个示例说明。 C4.5算法简介 C4.5算法是一种决树算法,是ID3算法的改进版。C4.5算法信息增益比来选择最佳分裂属性,可以处理连续属性缺失值,生成的决策树更加准确。 C4.5算法的实现 下是C4.5算法的实现过程: 1. 计算信息熵 信息熵用于衡量数据的确定性,计算公式为: $$H…

    python 2023年5月14日
    00
  • Python入门教程(一)Python简单介绍

    以下是关于“Python入门教程(一)Python简单介绍”的完整攻略: 简介 Python是一种高级编程语言,由Guido van Rossum于1989年底发明。Python的设计哲学强调代码的可读性和简洁性,以及对多种编程范式的支持。Python语言简单易学,适用于各种编程任务,包括Web开发、数据分析、人工智能等。 Python的特点 Python具…

    python 2023年5月14日
    00
  • EMI/EMS/EMC有什么关系?

    EMI(Electromagnetic Interference)直译是“电磁干扰”,是指电子设备(即干扰源)通过电磁波对其他电子设备产生干扰的现象。 从“攻击”方式上看,EMI主要有两种类型:传导干扰和辐射干扰。 电磁传导干扰是指干扰源通过导电介质(例如电线)把自身电网络上的信号耦合到另一个电网络。 电磁辐射干扰往往被我们简称为电磁辐射,它是指干扰源通过空…

    算法与数据结构 2023年4月17日
    00
  • python下10个简单实例代码

    以下是关于“Python下10个简单实例代码”的完整攻略: 简介 Python是一种易于学习和使用的编程语言,它具有广泛的应用领域。在本教程中,我们将介绍10个简单的Python实例代码,这些代码涵盖了Python的基础知识和常见的编程问题。 Python实例代码 以下是10个简单的Python实例代码: 1. 计算两个数的和 a = 5 b = 3 sum…

    python 2023年5月14日
    00
  • C++深入分析讲解链表

    C++深入分析讲解链表 链表概述 链表是数据结构中最基本和重要的一种,它的实现可以分为链表的节点和链表的指针。每个节点都记录着链表中的一个元素,并带有一个指向下一个节点的指针,这样就可以通过遍历指针,达到遍历链表的目的。 链表数据结构 在C++中,链表可以通过结构体或者类来实现,比如以下这个结构体实现的单向链表: struct Node { int data…

    数据结构 2023年5月17日
    00
  • 腾讯2018秋招正式笔试题目小结

    腾讯2018秋招正式笔试题目小结 背景介绍 腾讯作为中国科技领域的佼佼者,每年都会举行大规模的招聘,吸引着众多优秀的应聘者前来。其中,笔试是选拔过程中的重要环节,也是一个入职的关键。本文旨在对腾讯2018秋招正式笔试的题目进行详细的分析和总结,帮助广大应聘者更好地进行准备。 题目类型 腾讯2018秋招正式笔试共分为两个部分:编程题和客观题。编程题主要考察应聘…

    数据结构 2023年5月17日
    00
  • C语言数据结构 双向链表的建立与基本操作

    C语言数据结构 双向链表的建立与基本操作 双向链表的定义 双向链表是一种常见的线性数据结构,它由多个结点组成,每个结点有两个指针,一个指向前一个结点,一个指向后一个结点。对于一个双向链表,我们可以获得其第一个结点和最后一个结点的指针,也可以沿着链表从前往后或从后往前遍历链表的每个结点。 双向链表的建立 我们首先需要定义一个双向链表的结点类型,包括两个指针,一…

    数据结构 2023年5月17日
    00
合作推广
合作推广
分享本页
返回顶部