本文将具体介绍,当我们的数据导入到代码里时,数据有的可能是中文、数字、时间等等,对于计算机来说肯定十分头大,数据还会有缺失、不统一等问题,所以需要对数据进行标准化,也叫特征工程。

这样的好处主要有两个,一是可以提升模型的精度,二是可以提升模型的收敛速度

一、归一化 \ 标准化

sklearn的preprocessing提供了可以满足需求的归一化方法

1.1 StandardScaler

标准化数据通过减去均值然后除以方差(或标准差),这种数据标准化方法经过处理后数据符合标准正态分布,即均值为0,标准差为1,转化函数为:

x =(x - ????)/????

适用于:如果数据的分布本身就服从正态分布,就可以用这个方法。

通常这种方法基本可用于有outlier的情况,但是,在计算方差和均值的时候outliers仍然会影响计算。所以,在出现outliers的情况下可能会出现转换后的数的不同feature分布完全不同的情况。

一般使用方法:

a) 先用fit

scaler = preprocessing.StandardScaler().fit(X)

这一步可以得到scaler,scaler里面存的有计算出来的均值和方差

b) 再用transform

scaler.transform(X)/fit_transform

这一步再用scaler中的均值和方差来转换X,使X标准化

c) 那么在预测的时候, 也要对数据做同样的标准化处理,即也要用上面的scaler中的均值和方差来对预测时候的特征进行标准化

注意:测试数据和预测数据的标准化的方式要和训练数据标准化的方式一样, 必须用同一个scaler来进行transform

1.2 MinMaxScaler

将特征缩放至特定区间,将特征缩放到给定的最小值和最大值之间,或者也可以将每个特征的最大绝对值转换至单位大小。这种方法是对原始数据的线性变换,将数据归一到[0,1]中间。转换函数为:

x = (x-min)/(max-min)

这种方法有个 缺陷 就是当有新数据加入时,可能导致max和min的变化,需要重新定义。

敲黑板,这种方法对于outlier非常敏感,因为outlier影响了max或min值,所以这种方法只适用于数据在一个范围内分布的情况

 

1.3 RobustScaler

如果你的数据包含许多异常值,使用均值和方差缩放可能并不是一个很好的选择。这种情况下,你可以使用 robust_scale 以及 RobustScaler 作为替代品。它们对你的数据的中心和范围使用更有鲁棒性的估计。

This Scaler removes the median(中位数) and scales the data according to the quantile range(四分位距离,也就是说排除了outliers)

 

假设我们有一个只有一个hidden layer的多层感知机(MLP)的分类问题。每个hidden unit表示一个超平面,每个超平面是一个分类边界。参数w(weight)决定超平面的方向,参数b(bias)决定超平面离原点的距离。如果b是一些小的随机参数(事实上,b确实被初始化为很小的随机参数),那么所有的超平面都几乎穿过原点。所以,如果data没有中心化在原点周围,那么这个超平面可能没有穿过这些data,也就是说,这些data都在超平面的一侧。这样的话,局部极小点(local minima)很有可能出现。 所以,在这种情况下,标准化到[-1, 1]比[0, 1]更好。

1、在分类、聚类算法中,需要使用距离来度量相似性的时候、或者使用PCA技术进行降维的时候,StandardScaler表现更好。

2、在不涉及距离度量、协方差计算、数据不符合正太分布的时候,可以使用MinMaxScaler。比如图像处理中,将RGB图像转换为灰度图像后将其值限定在[0 255]的范围。

原因是使用MinMaxScaler,其协方差产生了倍数值的缩放,因此这种方式无法消除量纲对方差、协方差的影响,对PCA分析影响巨大;同时,由于量纲的存在,使用不同的量纲、距离的计算结果会不同。

而在StandardScaler中,新的数据由于对方差进行了归一化,这时候每个维度的量纲其实已经等价了,每个维度都服从均值为0、方差1的正态分布,在计算距离的时候,每个维度都是去量纲化的,避免了不同量纲的选取对距离计算产生的巨大影响。

 

参考:https://www.cnblogs.com/bjwu/p/8977141.html