Pandas Series结构对象的创建与访问方法

Pandas Series结构是什么?

Pandas Series是一种类似于一维数组的数据结构,可以存储任意类型的数据,包括整数、浮点数、字符串、Python对象等。Series有两个主要的部分:索引和值,其中索引用于标识每个值的位置,可以是整数、字符串或其他数据类型。Series中的每个值都与一个索引值对应,因此可以通过索引来访问数据。Series的特点包括:

  • 一维数组:Pandas Series是一种一维数组,可以轻松地存储和操作数据。
  • 灵活的索引:Pandas Series的索引可以是数字、字符串或其他数据类型,因此可以根据需要对数据进行灵活的操作。
  • 数据对齐:在进行算术运算时,Pandas Series会自动对齐不同索引的数据,这样可以避免出现缺失值或NaN。
  • 缺失值处理:Pandas Series提供了多种方法来处理缺失值,包括删除、填充和插值等。

Pandas 创建Series对象

Pandas 使用 Series() 函数来创建 Series 对象,通过这个对象可以调用相应的方法和属性,从而达到处理数据的目的。

有4种创建Pandas Series() 对象的方法:

使用Python列表创建Series对象

import pandas as pd

data = [1, 2, 3, 4, 5]
s = pd.Series(data)
print(s)

输出结果:

0    1
1    2
2    3
3    4
4    5
dtype: int64

使用Python字典创建Series对象

import pandas as pd

data = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}
s = pd.Series(data)
print(s)

输出结果:

a    1
b    2
c    3
d    4
e    5
dtype: int64

使用numpy数组创建Series对象

import pandas as pd
import numpy as np

data = np.array([1, 2, 3, 4, 5])
s = pd.Series(data)
print(s)

输出结果:

0    1
1    2
2    3
3    4
4    5
dtype: int64

指定Series对象的索引

import pandas as pd

data = [1, 2, 3, 4, 5]
index = ['a', 'b', 'c', 'd', 'e']
s = pd.Series(data, index=index)
print(s)

输出结果:

a    1
b    2
c    3
d    4
e    5
dtype: int64

使用标量创建Series对象

import pandas as pd

s = pd.Series(5, index=['a', 'b', 'c', 'd', 'e'])
print(s)

输出结果:

a    5
b    5
c    5
d    5
e    5
dtype: int64

Pandas 访问Series对象

pandas中访问Series数据的方法主要有两种:

  1. 通过索引访问:使用方括号 [],中括号内输入索引值或者索引标签来访问对应的数据。例如,s[0] 或者 s['a'] 都可以访问索引为0或者索引标签为'a'的数据。

  2. 通过切片访问:使用方括号 [] 和冒号 :,中括号内输入切片范围来访问对应的数据。例如,s[1:3] 可以访问索引为1和2的数据,不包括索引为3的数据。

下面是一些示例:

import pandas as pd

# 创建 Series
s = pd.Series([1, 2, 3, 4, 5])

# 访问第三个元素
print(s[2])  # 输出 3

# 访问前三个元素
print(s[:3])  # 输出 0    1\n1    2\n2    3\ndtype: int64

# 访问后三个元素
print(s[-3:])  # 输出 2    3\n3    4\n4    5\ndtype: int64

# 使用索标签访问单个元素值
s = pd.Series([6,7,8,9,10],index = ['a','b','c','d','e'])
print(s['a'])

# 使用索引标签访问多个元素值
s = pd.Series([6,7,8,9,10],index = ['a','b','c','d','e'])

print(s[['a','c','d']])

另外,还可以使用布尔型数组来访问数据。这种方法需要先构造一个布尔型数组,然后通过方括号 [] 将其传入Series对象中,返回一个新的Series对象,该对象包含满足条件的所有元素。例如:

s = pd.Series([1, 2, 3, 4, 5])
mask = s > 3
new_s = s[mask]

上述代码中,首先构造了一个Series对象 s,然后通过条件语句 s > 3 构造了一个布尔型数组 mask,表示每个元素是否大于3。最后,通过将 mask 传入 s[mask],返回一个新的Series对象 new_s,该对象包含原Series对象中所有大于3的元素。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pandas Series结构对象的创建与访问方法 - Python技术站

(1)
上一篇 2023年3月4日
下一篇 2023年3月4日

相关文章

  • python中isoweekday和weekday的区别及说明

    当我们使用Python中的datetime模块进行日期处理时,常常会用到weekday()和isoweekday()两个函数。虽然这两个函数都可以用于获取日期是一周中的星期几,但是它们之间确实有些区别。下面我们就来详细讲解一下它们的区别及说明。 weekday()函数 weekday()函数返回日期值是星期几,其中星期一为0,星期日为6。以下是weekday…

    python 2023年5月14日
    00
  • 将嵌套的JSON结构转换为Pandas DataFrames

    将嵌套的JSON结构转换为Pandas DataFrame可以使用Pandas库中的json_normalize函数,以下是详细步骤: 导入 Pandas 库: import pandas as pd 使用 json_normalize 函数读取 json 数据,json_normalize 函数可以将嵌套的 json 结构转换为扁平的表格结构: df = …

    python-answer 2023年3月27日
    00
  • python文件的读取、写入与删除

    下面开始讲解“Python文件的读取、写入与删除”的攻略。 读取文件 Python可以使用内置的open()函数来打开文件,open()函数支持多种打开模式,例如只读模式(r),只写模式(w),读写模式(r+),追加模式(a)等。 示例1: 读取整个文件 # 打开文件 file = open(‘example.txt’, ‘r’) # 读取整个文件内容 co…

    python 2023年6月13日
    00
  • 如何使用另一个数据框架的索引来选择一个数据框架的行

    要使用另一个数据框架的索引来选择一个数据框架的行,可以使用isin()方法和布尔索引。具体步骤如下: 准备两个数据框架。在本例中,我们将使用以下两个数据框架: import pandas as pd df1 = pd.DataFrame({‘A’: [‘foo’, ‘bar’, ‘baz’, ‘qux’], ‘B’: [1, 2, 3, 4], ‘C’: […

    python-answer 2023年3月27日
    00
  • springboot整合单机缓存ehcache的实现

    下面是关于“springboot整合单机缓存ehcache的实现”的完整攻略。 1、什么是Ehcache Ehcache是一个开源的、基于Java的、容易使用的缓存管理系统。它可以用于加速应用程序的性能和管理大量数据。 Ehcache提供了多种缓存的策略,包括最近最少使用(LRU)、最少使用(LFU)、FIFO等。Ehcache旨在为Java应用程序提供高速…

    python 2023年5月14日
    00
  • pandas 修改列名的实现示例

    下面是“pandas 修改列名的实现示例”的完整攻略。 实现方法 在 Pandas 中,修改列名有多种方法,其中较为常见的方法是使用 rename() 方法和直接赋值修改列名属性。 使用 rename() 方法 使用 rename() 方法可以非常方便地修改 Pandas 数据框的列名,方法原型如下: DataFrame.rename(mapper=None…

    python 2023年5月14日
    00
  • 检查Pandas DataFrame中某一列是否以给定的字符串开头

    要检查Pandas DataFrame中某一列是否以给定的字符串开头,可以使用Pandas的str属性和startswith()方法。 步骤如下: 导入 Pandas 库并读入数据 import pandas as pd df = pd.read_csv(‘data.csv’) 选取需要检查的列 col_to_check = df[‘column_name’…

    python-answer 2023年3月27日
    00
  • 使用Regex从Dataframe的指定列中提取标点符号

    使用Regex从Dataframe的指定列中提取标点符号的步骤如下: 导入必要的库 首先需要导入pandas库和re库,其中pandas库用于读取和处理数据,re库用于进行正则表达式匹配。 import pandas as pd import re 读取数据 使用pandas库读取数据,例如读取名为”example.csv”的表格数据。假设表格中有一列名为”…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部