Python GDAL读取栅格数据并基于质量评估波段QA对指定数据加以筛选掩膜

  本文介绍基于Python语言中gdal模块,对遥感影像数据进行栅格读取与计算,同时基于QA波段对像元加以筛选、掩膜的操作。

  本文所要实现的需求具体为:现有自行计算的全球叶面积指数(LAI.tif格式栅格产品(下称“自有产品”),为了验证其精确度,需要与已有学者提出的成熟产品——GLASS全球LAI.hdf格式栅格产品(下称“GLASS产品”)进行做差对比;其中,自有产品除了LAI波段外,还有一个质量评估波段QA),即自有产品在后期使用时,还需结合QA波段进行筛选、掩膜等处理。其中,二者均为基于MODIS hv分幅的产品。

  本文分为两部分,第一部分为代码的详细分段讲解,第二部分为完整代码。

1 代码分段讲解

1.1 模块与路径准备

  首先,需要对用到的模块与存放栅格图像的各类路径加以准备。

import os
import copy
import numpy as np
import pylab as plt
from osgeo import gdal

# rt_file_path="G:/Postgraduate/LAI_Glass_RTlab/Rc_Lai_A2018161_h12v03.tif"
# gl_file_path="G:/Postgraduate/LAI_Glass_RTlab/GLASS01E01.V50.A2018161.h12v03.2020323.hdf"
# out_file_path="G:/Postgraduate/LAI_Glass_RTlab/test.tif"
rt_file_path="I:/LAI_RTLab/A2018161/"
gl_file_path="I:/LAI_Glass/2018161/"
out_file_path="I:/LAI_Dif/"

  其中,rt_file_path为自有产品的存放路径,gl_file_pathGLASS产品的存放路径,out_file_path为最终二者栅格做完差值处理后结果的存放路径。

1.2 栅格图像文件名读取与配对

  接下来,需要将全部待处理的栅格图像用os.listdir()进行获取,并用for循环进行循环批量处理操作的准备。

rt_file_list=os.listdir(rt_file_path)
for rt_file in rt_file_list:
    file_name_split=rt_file.split("_")
    rt_hv=file_name_split[3][:-4]
    
    gl_file_list=os.listdir(gl_file_path)
    for gl_file in gl_file_list:
        if rt_hv in gl_file:
            rt_file_tif_path=rt_file_path+rt_file
            gl_file_tif_path=gl_file_path+gl_file

  其中,由于本文需求是对两种产品做差,因此首先需要结合二者的hv分幅编号,将同一分幅编号的两景遥感影像放在一起;因此,依据自有产品文件名的特征,选择.split()进行字符串分割,并随后截取获得遥感影像的hv分幅编号。

1.3 输出文件名称准备

  前述1.1部分已经配置好了输出文件存放的路径,但是还没有进行输出文件文件名的配置;因此这里我们需要配置好每一个做差后的遥感影像的文件存放路径与名称。其中,我们就直接以遥感影像的hv编号作为输出结果文件名。

            DRT_out_file_path=out_file_path+"DRT/"
            if not os.path.exists(DRT_out_file_path):
                os.makedirs(DRT_out_file_path)
            DRT_out_file_tif_path=os.path.join(DRT_out_file_path,rt_hv+".tif")
            
            eco_out_file_path=out_file_path+"eco/"
            if not os.path.exists(eco_out_file_path):
                os.makedirs(eco_out_file_path)
            eco_out_file_tif_path=os.path.join(eco_out_file_path,rt_hv+".tif")
            
            wat_out_file_path=out_file_path+"wat/"
            if not os.path.exists(wat_out_file_path):
                os.makedirs(wat_out_file_path)
            wat_out_file_tif_path=os.path.join(wat_out_file_path,rt_hv+".tif")
            
            tim_out_file_path=out_file_path+"tim/"
            if not os.path.exists(tim_out_file_path):
                os.makedirs(tim_out_file_path)
            tim_out_file_tif_path=os.path.join(tim_out_file_path,rt_hv+".tif")

  这一部分代码分为了四个部分,是因为自有产品的LAI是分别依据四种算法得到的,在做差时需要每一种算法分别和GLASS产品进行相减,因此配置了四个输出路径文件夹。

1.4 栅格文件数据与信息读取

  接下来,利用gdal模块对.tif.hdf等两种栅格图像加以读取。

            rt_raster=gdal.Open(rt_file_path+rt_file)
            rt_band_num=rt_raster.RasterCount
            rt_raster_array=rt_raster.ReadAsArray()
            rt_lai_array=rt_raster_array[0]
            rt_qa_array=rt_raster_array[1]
            rt_lai_band=rt_raster.GetRasterBand(1)
            # rt_lai_nodata=rt_lai_band.GetNoDataValue()
            # rt_lai_nodata=32767
            # rt_lai_mask=np.ma.masked_equal(rt_lai_array,rt_lai_nodata)
            rt_lai_array_mask=np.where(rt_lai_array>30000,np.nan,rt_lai_array)
            rt_lai_array_fin=rt_lai_array_mask*0.001
            
            gl_raster=gdal.Open(gl_file_path+gl_file)
            gl_band_num=gl_raster.RasterCount
            gl_raster_array=gl_raster.ReadAsArray()
            gl_lai_array=gl_raster_array
            gl_lai_band=gl_raster.GetRasterBand(1)
            gl_lai_array_mask=np.where(gl_lai_array>1000,np.nan,gl_lai_array)
            gl_lai_array_fin=gl_lai_array_mask*0.01
            
            row=rt_raster.RasterYSize
            col=rt_raster.RasterXSize
            geotransform=rt_raster.GetGeoTransform()
            projection=rt_raster.GetProjection()

  首先,以上述代码的第一段为例进行讲解。其中,gdal.Open()读取栅格图像;.RasterCount获取栅格图像波段数量;.ReadAsArray()将栅格图像各波段的信息读取为Array格式,当波段数量大于1时,其共有三维,第一维为波段的个数;rt_raster_array[0]表示取Array中的第一个波段,在本文中也就是自有产品的LAI波段;rt_qa_array=rt_raster_array[1]则表示取出第二个波段,在本文中也就是自有产品的QA波段;.GetRasterBand(1)表示获取栅格图像中的第一个波段(注意,这里序号不是从0开始而是从1开始);np.where(rt_lai_array>30000,np.nan,rt_lai_array)表示利用np.where()函数对Array中第一个波段中像素>30000加以选取,并将其设置为nan,其他值不变。这一步骤是消除图像中填充值、Nodata值的方法。最后一句*0.001是将图层原有的缩放系数复原。

  其次,上述代码第三段为获取栅格行、列数与投影变换信息。

1.5 差值计算与QA波段筛选

  接下来,首先对自有产品与GLASS产品加以做差操作,随后需要对四种算法分别加以提取。

            lai_dif=rt_lai_array_fin-gl_lai_array_fin
            lai_dif=lai_dif*1000
            
            rt_qa_array_bin=copy.copy(rt_qa_array)
            rt_qa_array_row,rt_qa_array_col=rt_qa_array.shape
            for i in range(rt_qa_array_row):
                for j in range(rt_qa_array_col):
                    rt_qa_array_bin[i][j]="{:012b}".format(rt_qa_array_bin[i][j])[-4:]
                    
            # DRT_pixel_pos=np.where((rt_qa_array_bin>=100) & (rt_qa_array_bin==11))
            # eco_pixel_pos=np.where((rt_qa_array_bin<100) & (rt_qa_array_bin==111))
            # wat_pixel_pos=np.where((rt_qa_array_bin<1000) & (rt_qa_array_bin==1011))
            # tim_pixel_pos=np.where((rt_qa_array_bin<1100) & (rt_qa_array_bin==1111))
            
            # colormap=plt.cm.Greens
            # plt.figure(1)
            # # plt.subplot(2,4,1)
            # plt.imshow(rt_lai_array_fin,cmap=colormap,interpolation='none')
            # plt.title("RT_LAI")
            # plt.colorbar()
            # plt.figure(2)
            # # plt.subplot(2,4,2)
            # plt.imshow(gl_lai_array_fin,cmap=colormap,interpolation='none')
            # plt.title("GLASS_LAI")
            # plt.colorbar()
            # plt.figure(3)
            # dif_colormap=plt.cm.get_cmap("Spectral")
            # plt.imshow(lai_dif,cmap=dif_colormap,interpolation='none')
            # plt.title("Difference_LAI (RT-GLASS)")
            # plt.colorbar()
            
            DRT_lai_dif_array=np.where((rt_qa_array_bin>=100) | (rt_qa_array_bin==11),
                                       np.nan,lai_dif)
            eco_lai_dif_array=np.where((rt_qa_array_bin<100) | (rt_qa_array_bin==111),
                                       np.nan,lai_dif)
            wat_lai_dif_array=np.where((rt_qa_array_bin<1000) | (rt_qa_array_bin==1011),
                                       np.nan,lai_dif)
            tim_lai_dif_array=np.where((rt_qa_array_bin<1100) | (rt_qa_array_bin==1111),
                                       np.nan,lai_dif)
            
            # plt.figure(4)
            # plt.imshow(DRT_lai_dif_array)
            # plt.colorbar()
            # plt.figure(5)
            # plt.imshow(eco_lai_dif_array)
            # plt.colorbar()
            # plt.figure(6)
            # plt.imshow(wat_lai_dif_array)
            # plt.colorbar()
            # plt.figure(7)
            # plt.imshow(tim_lai_dif_array)
            # plt.colorbar()

  其中,上述代码前两句为差值计算与数据化整。将数据转换为整数,可以减少结果数据图层的数据量(因为不需要存储小数了)。

  随后,开始依据QA波段进行数据筛选与掩膜。其实各类遥感影像(例如MODISLandsat等)的QA波段都是比较近似的:通过一串二进制码来表示遥感影像的质量、信息等,其中不同的比特位往往都代表着一种特性。例如下图所示为Landsat Collection 2 Level-2QA波段含义。

Python GDAL读取栅格数据并基于质量评估波段QA对指定数据加以筛选掩膜

  在这里,QA波段原本为十进制(一般遥感影像为了节省空间,QA波段都是写成十进制的形式),因此需要将其转换为二进制;随后通过获取指定需要的二进制数据位数(在本文中也就是能确定自有产品中这一像素来自于哪一种算法的二进制位数),从而判断这一像素所得LAI是通过哪一种算法得到的,从而将每种算法对应的像素分别放在一起处理。DRT_lai_dif_array等四个变量分别表示四种算法中,除了自己这一种算法得到的像素之外的其他所有像素;之所以选择这种方式,是因为后期我们可以将其直接掩膜掉,那么剩下的就是这种算法自身的像素了。

  其中,上述代码注释掉的plt相关内容可以实现绘制空间分布图,大家感兴趣可以尝试使用。

1.6 结果栅格文件写入与保存

  接下来,将我们完成上述差值计算与依据算法进行筛选后的图像保存。

            driver=gdal.GetDriverByName("Gtiff")
            out_DRT_lai=driver.Create(DRT_out_file_tif_path,row,col,1,gdal.GDT_Float32)
            out_DRT_lai.SetGeoTransform(geotransform)
            out_DRT_lai.SetProjection(projection)
            out_DRT_lai.GetRasterBand(1).WriteArray(DRT_lai_dif_array)
            out_DRT_lai=None
            
            driver=gdal.GetDriverByName("Gtiff")
            out_eco_lai=driver.Create(eco_out_file_tif_path,row,col,1,gdal.GDT_Float32)
            out_eco_lai.SetGeoTransform(geotransform)
            out_eco_lai.SetProjection(projection)
            out_eco_lai.GetRasterBand(1).WriteArray(eco_lai_dif_array)
            out_eco_lai=None
            
            driver=gdal.GetDriverByName("Gtiff")
            out_wat_lai=driver.Create(wat_out_file_tif_path,row,col,1,gdal.GDT_Float32)
            out_wat_lai.SetGeoTransform(geotransform)
            out_wat_lai.SetProjection(projection)
            out_wat_lai.GetRasterBand(1).WriteArray(wat_lai_dif_array)
            out_wat_lai=None
            
            driver=gdal.GetDriverByName("Gtiff")
            out_tim_lai=driver.Create(tim_out_file_tif_path,row,col,1,gdal.GDT_Float32)
            out_tim_lai.SetGeoTransform(geotransform)
            out_tim_lai.SetProjection(projection)
            out_tim_lai.GetRasterBand(1).WriteArray(tim_lai_dif_array)
            out_tim_lai=None
            
            print(rt_hv)

  其中,.GetDriverByName("Gtiff")表示保存为.tif格式的GeoTIFF文件;driver.Create(DRT_out_file_tif_path,row,col,1,gdal.GDT_Float32)表示按照路径、行列数、波段数与数据格式等建立一个新的栅格图层,作为输出图层的框架;其后表示分别将地理投影转换信息与像素具体数值分别赋予这一新建的栅格图层;最后=None表示将其从内存空间中释放,完成写入与保存工作。

2 完整代码

  本文所需完整代码如下:

# -*- coding: utf-8 -*-
"""
Created on Thu Jul 15 19:36:15 2021

@author: fkxxgis
"""

import os
import copy
import numpy as np
import pylab as plt
from osgeo import gdal

# rt_file_path="G:/Postgraduate/LAI_Glass_RTlab/Rc_Lai_A2018161_h12v03.tif"
# gl_file_path="G:/Postgraduate/LAI_Glass_RTlab/GLASS01E01.V50.A2018161.h12v03.2020323.hdf"
# out_file_path="G:/Postgraduate/LAI_Glass_RTlab/test.tif"
rt_file_path="I:/LAI_RTLab/A2018161/"
gl_file_path="I:/LAI_Glass/2018161/"
out_file_path="I:/LAI_Dif/"

rt_file_list=os.listdir(rt_file_path)
for rt_file in rt_file_list:
    file_name_split=rt_file.split("_")
    rt_hv=file_name_split[3][:-4]
    
    gl_file_list=os.listdir(gl_file_path)
    for gl_file in gl_file_list:
        if rt_hv in gl_file:
            rt_file_tif_path=rt_file_path+rt_file
            gl_file_tif_path=gl_file_path+gl_file
            
            DRT_out_file_path=out_file_path+"DRT/"
            if not os.path.exists(DRT_out_file_path):
                os.makedirs(DRT_out_file_path)
            DRT_out_file_tif_path=os.path.join(DRT_out_file_path,rt_hv+".tif")
            
            eco_out_file_path=out_file_path+"eco/"
            if not os.path.exists(eco_out_file_path):
                os.makedirs(eco_out_file_path)
            eco_out_file_tif_path=os.path.join(eco_out_file_path,rt_hv+".tif")
            
            wat_out_file_path=out_file_path+"wat/"
            if not os.path.exists(wat_out_file_path):
                os.makedirs(wat_out_file_path)
            wat_out_file_tif_path=os.path.join(wat_out_file_path,rt_hv+".tif")
            
            tim_out_file_path=out_file_path+"tim/"
            if not os.path.exists(tim_out_file_path):
                os.makedirs(tim_out_file_path)
            tim_out_file_tif_path=os.path.join(tim_out_file_path,rt_hv+".tif")

            rt_raster=gdal.Open(rt_file_path+rt_file)
            rt_band_num=rt_raster.RasterCount
            rt_raster_array=rt_raster.ReadAsArray()
            rt_lai_array=rt_raster_array[0]
            rt_qa_array=rt_raster_array[1]
            rt_lai_band=rt_raster.GetRasterBand(1)
            # rt_lai_nodata=rt_lai_band.GetNoDataValue()
            # rt_lai_nodata=32767
            # rt_lai_mask=np.ma.masked_equal(rt_lai_array,rt_lai_nodata)
            rt_lai_array_mask=np.where(rt_lai_array>30000,np.nan,rt_lai_array)
            rt_lai_array_fin=rt_lai_array_mask*0.001
            
            gl_raster=gdal.Open(gl_file_path+gl_file)
            gl_band_num=gl_raster.RasterCount
            gl_raster_array=gl_raster.ReadAsArray()
            gl_lai_array=gl_raster_array
            gl_lai_band=gl_raster.GetRasterBand(1)
            gl_lai_array_mask=np.where(gl_lai_array>1000,np.nan,gl_lai_array)
            gl_lai_array_fin=gl_lai_array_mask*0.01
            
            row=rt_raster.RasterYSize
            col=rt_raster.RasterXSize
            geotransform=rt_raster.GetGeoTransform()
            projection=rt_raster.GetProjection()
            
            lai_dif=rt_lai_array_fin-gl_lai_array_fin
            lai_dif=lai_dif*1000
            
            rt_qa_array_bin=copy.copy(rt_qa_array)
            rt_qa_array_row,rt_qa_array_col=rt_qa_array.shape
            for i in range(rt_qa_array_row):
                for j in range(rt_qa_array_col):
                    rt_qa_array_bin[i][j]="{:012b}".format(rt_qa_array_bin[i][j])[-4:]
                    
            # DRT_pixel_pos=np.where((rt_qa_array_bin>=100) & (rt_qa_array_bin==11))
            # eco_pixel_pos=np.where((rt_qa_array_bin<100) & (rt_qa_array_bin==111))
            # wat_pixel_pos=np.where((rt_qa_array_bin<1000) & (rt_qa_array_bin==1011))
            # tim_pixel_pos=np.where((rt_qa_array_bin<1100) & (rt_qa_array_bin==1111))
            
            # colormap=plt.cm.Greens
            # plt.figure(1)
            # # plt.subplot(2,4,1)
            # plt.imshow(rt_lai_array_fin,cmap=colormap,interpolation='none')
            # plt.title("RT_LAI")
            # plt.colorbar()
            # plt.figure(2)
            # # plt.subplot(2,4,2)
            # plt.imshow(gl_lai_array_fin,cmap=colormap,interpolation='none')
            # plt.title("GLASS_LAI")
            # plt.colorbar()
            # plt.figure(3)
            # dif_colormap=plt.cm.get_cmap("Spectral")
            # plt.imshow(lai_dif,cmap=dif_colormap,interpolation='none')
            # plt.title("Difference_LAI (RT-GLASS)")
            # plt.colorbar()
            
            DRT_lai_dif_array=np.where((rt_qa_array_bin>=100) | (rt_qa_array_bin==11),
                                       np.nan,lai_dif)
            eco_lai_dif_array=np.where((rt_qa_array_bin<100) | (rt_qa_array_bin==111),
                                       np.nan,lai_dif)
            wat_lai_dif_array=np.where((rt_qa_array_bin<1000) | (rt_qa_array_bin==1011),
                                       np.nan,lai_dif)
            tim_lai_dif_array=np.where((rt_qa_array_bin<1100) | (rt_qa_array_bin==1111),
                                       np.nan,lai_dif)
            
            # plt.figure(4)
            # plt.imshow(DRT_lai_dif_array)
            # plt.colorbar()
            # plt.figure(5)
            # plt.imshow(eco_lai_dif_array)
            # plt.colorbar()
            # plt.figure(6)
            # plt.imshow(wat_lai_dif_array)
            # plt.colorbar()
            # plt.figure(7)
            # plt.imshow(tim_lai_dif_array)
            # plt.colorbar()
            
            driver=gdal.GetDriverByName("Gtiff")
            out_DRT_lai=driver.Create(DRT_out_file_tif_path,row,col,1,gdal.GDT_Float32)
            out_DRT_lai.SetGeoTransform(geotransform)
            out_DRT_lai.SetProjection(projection)
            out_DRT_lai.GetRasterBand(1).WriteArray(DRT_lai_dif_array)
            out_DRT_lai=None
            
            driver=gdal.GetDriverByName("Gtiff")
            out_eco_lai=driver.Create(eco_out_file_tif_path,row,col,1,gdal.GDT_Float32)
            out_eco_lai.SetGeoTransform(geotransform)
            out_eco_lai.SetProjection(projection)
            out_eco_lai.GetRasterBand(1).WriteArray(eco_lai_dif_array)
            out_eco_lai=None
            
            driver=gdal.GetDriverByName("Gtiff")
            out_wat_lai=driver.Create(wat_out_file_tif_path,row,col,1,gdal.GDT_Float32)
            out_wat_lai.SetGeoTransform(geotransform)
            out_wat_lai.SetProjection(projection)
            out_wat_lai.GetRasterBand(1).WriteArray(wat_lai_dif_array)
            out_wat_lai=None
            
            driver=gdal.GetDriverByName("Gtiff")
            out_tim_lai=driver.Create(tim_out_file_tif_path,row,col,1,gdal.GDT_Float32)
            out_tim_lai.SetGeoTransform(geotransform)
            out_tim_lai.SetProjection(projection)
            out_tim_lai.GetRasterBand(1).WriteArray(tim_lai_dif_array)
            out_tim_lai=None
            
            print(rt_hv)

  至此,大功告成。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python GDAL读取栅格数据并基于质量评估波段QA对指定数据加以筛选掩膜 - Python技术站

(0)
上一篇 2023年3月31日
下一篇 2023年3月31日

相关文章

  • Python读取大量Excel文件并跨文件批量计算平均值

      本文介绍基于Python语言,实现对多个不同Excel文件进行数据读取与平均值计算的方法。   首先,让我们来看一下具体需求:目前有一个文件夹,其中存放了大量Excel文件;文件名称是每一位同学的名字,即文件名称没有任何规律。   而每一个文件都是一位同学对全班除了自己之外的其他同学的各项打分,我们以其中一个Excel文件为例来看:   可以看到,全班同…

    Python开发 2023年3月31日
    00
  • 多变量两两相互关系联合分布图的Python绘制

      本文介绍基于Python中seaborn模块,实现联合分布图绘制的方法。   联合分布(Joint Distribution)图是一种查看两个或两个以上变量之间两两相互关系的可视化图,在数据分析操作中经常需要用到。一幅好看的联合分布图可以使得我们的数据分析更加具有可视性,让大家眼前一亮。   那么,本文就将用seaborn来实现联合分布图的绘制。seab…

    Python开发 2023年3月31日
    00
  • Python TensorFlow深度神经网络回归:keras.Sequential

      本文介绍基于Python语言中TensorFlow的Keras接口,实现深度神经网络回归的方法。 目录 1 写在前面 2 代码分解介绍 2.1 准备工作 2.2 参数配置 2.3 数据导入与数据划分 2.4 联合分布图绘制 2.5 因变量分离与数据标准化 2.6 原有模型删除 2.7 最优Epoch保存与读取 2.8 模型构建 2.9 训练图像绘制 2.…

    Python开发 2023年3月31日
    00
  • Python导入Excel表格数据并以字典dict格式保存

      本文介绍基于Python语言,将一个Excel表格文件中的数据导入到Python中,并将其通过字典格式来存储的方法。   我们以如下所示的一个表格(.xlsx格式)作为简单的示例。其中,表格共有两列,第一列为学号,第二列为姓名,且每一行的学号都不重复;同时表格的第一行为表头。   假设我们需要将第一列的学号数据作为字典的键,而第二列姓名数据作为字典的值。…

    Python开发 2023年3月31日
    00
  • Python实现随机森林RF并对比自变量的重要性

      本文介绍在Python环境中,实现随机森林(Random Forest,RF)回归与各自变量重要性分析与排序的过程。   其中,关于基于MATLAB实现同样过程的代码与实战,大家可以点击查看MATLAB实现随机森林(RF)回归与自变量影响程度分析这篇文章。   本文分为两部分,第一部分为代码的分段讲解,第二部分为完整代码。 1 代码分段讲解 1.1 模块…

    Python开发 2023年3月31日
    00
  • Python批量读取HDF多波段栅格数据并绘制像元直方图

      本文介绍基于Python语言gdal模块,实现多波段HDF栅格图像文件的读取、处理与像元值可视化(直方图绘制)等操作。   另外,基于gdal等模块读取.tif格式栅格图层文件的方法可以查看Python批量绘制遥感影像数据的直方图,读取单波段.hdf格式栅格图层文件的方法可以查看Python GDAL读取栅格数据并基于质量评估波段QA对指定数据加以筛选掩…

    Python开发 2023年3月31日
    00
  • Python ArcPy批量计算多时相遥感影像的各项元平均值

      本文介绍基于Python中ArcPy模块,对大量长时间序列栅格遥感影像文件的每一个像元进行多时序平均值的求取。   在遥感应用中,我们经常需要对某一景遥感影像中的全部像元的像素值进行平均值求取——这一操作很好实现,基于ArcMap软件或者简单的Python代码就可以实现;但有时候,我们会需要结合同一地区、不同时相的多景遥感影像,求取每一个像元在全部时相中…

    python 2023年4月19日
    00
  • Python自动批量修改文件名称的方法

      本文介绍基于Python语言,按照一定命名规则批量修改多个文件的文件名的方法。   已知现有一个文件夹,其中包括班级所有同学上交的作业文件,每人一份;所有作业文件命名格式统一,都是地信1701_姓名_学习心得格式。   现需要对每一位同学的作业文件加以改名,有很多种需求。   第一种需求,将每一位同学作业文件名中原本是姓名的部分,都修改为学号。即原本的地…

    Python开发 2023年3月31日
    00
合作推广
合作推广
分享本页
返回顶部