任务目标

  • 对鸢尾花数据集分析
  • 建立鸢尾花的模型
  • 利用模型预测鸢尾花的类别

环境搭建

pycharm编辑器搭建python3.*
第三方库


处理鸢尾花数据集

了解数据集

鸢尾花数据集是一个经典的机器学习数据集,非常适合用来入门。
鸢尾花数据集链接:下载鸢尾花数据集
鸢尾花数据集包含四个特征和一个标签。这四个特征确定了单株鸢尾花的下列植物学特征:

  • 花萼长度
  • 花萼宽度
  • 花瓣长度
  • 花瓣宽度

该表确定了鸢尾花品种,品种必须是下列任意一种:

  • 山鸢尾 Iris-Setosa(0)
  • 杂色鸢尾 Iris-versicolor(1)
  • 维吉尼亚鸢尾 Iris-virginica(2)

数据集中三类鸢尾花各含有50个样本,共150各样本

下面显示了数据集中的样本:
对鸢尾花识别之tensorflow
机器学习中,为了保证测试结果的准确性,一般会从数据集中抽取一部分数据专门留作测试,其余数据用于训练。所以我将数据集按7:3(训练集:测试集)的比例进行划分。

数据集处理具体代码

def dealIrisData(IrisDatapath):
    """
    :param IrisDatapath:传入数据集路径 
    :return: 返回 训练特征集,测试特征集,训练标签集,测试标签集
    """
    # 读取数据集
    iris = pd.read_csv(IrisDatapath, header=None)

    # 数据集转化成数组
    iris = np.array(iris)
    # 提取特征集
    X = iris[:, 0:4]
    # 提取标签集
    Y = iris[:, 4]

    # One-Hot编码
    encoder = LabelEncoder()
    Y = encoder.fit_transform(Y)
    Y = np_utils.to_categorical(Y)

    x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3)
    return x_train,x_test,y_train,y_test

什么是one-hot编码?

  One-Hot编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。
  One-Hot编码是分类变量作为二进制向量的表示。这首先要求将分类值映射到整数值。然后,每个整数值被表示为二进制向量,除了整数的索引之外,它都是零值,它被标记为1。
  One-Hot编码是将类别变量转换为机器学习算法易于利用的一种形式的过程。
  比如:["山鸢尾","杂色鸢尾","维吉尼亚鸢尾"]---->[[1,0,0][0,1,0][0,0,1]]


模型建立

  由于结构简单并没有建立隐藏层。
建立模型代码

def getIrisModel(saveModelPath,step):
    """
    :param saveModelPath: 模型保存路径
    :param step: 训练步数
    :return: None
    """
    x_train, x_test, y_train, y_test = dealIrisData("iris.data")
    # 输入层
    with tf.variable_scope("data"):
        x = tf.placeholder(tf.float32,[None,4])
        y_true = tf.placeholder(tf.int32,[None,3])
        # placeholder()函数是在神经网络构建graph的时候在模型中的占位,此时并没有把要输入的数据传入模型,
        # 它只会分配必要的内存。等建立session,在会话中,运行模型的时候通过feed_dict()函数向占位符喂入数据。

    # 无隐藏层

    # 输出层
    with tf.variable_scope("fc_model"):
        weight = tf.Variable(tf.random_normal([4,3],mean=0.0,stddev=1.0)) # 创建一个形状为[4,3],均值为0,方差为1的正态分布随机值变量
        bias = tf.Variable(tf.constant(0.0,shape=[3])) # 创建 张量为0,形状为3变量
        y_predict = tf.matmul(x,weight)+bias # 矩阵相乘
        # Variable()创建一个变量
    # 误差
    with tf.variable_scope("loss"):
        loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true,logits=y_predict))
    # 优化器
    with tf.variable_scope("optimizer"):
        train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    # 准确率
    with tf.variable_scope("acc"):
        equal_list = tf.equal(tf.arg_max(y_true,1),tf.arg_max(y_predict,1))
        accuracy = tf.reduce_mean(tf.cast(equal_list,tf.float32))
    # 开始训练
    with tf.Session() as sess:
        saver = tf.train.Saver()
        sess.run(tf.global_variables_initializer())
        for i in range(step):
            _train = sess.run(train_op, feed_dict={x: x_train, y_true: y_train})
            _acc = sess.run(accuracy, feed_dict={x: x_train, y_true: y_train})
            print("训练%d步,准确率为%.2f" % (i + 1, _acc))
        print("测试集的准确率为%.2f" %sess.run(accuracy, feed_dict={x: x_test, y_true: y_test}))
        saver.save(sess, saveModelPath)

载入模型—预测鸢尾花

  • saver.restore()时填的文件名,因为在saver.save的时候,每个checkpoint会保存三个文件,如 modelIris.meta,modelIris.index, modelIris.data-00000-of-00001
    在import_meta_graph时填的就是meta文件名,我们知道权值都保存在modelIris.data-00000-of-00001这个文件中,但是如果在restore方法中填这个文件名,就会报错,应该填的是前缀,这个前缀可以使用tf.train.latest_checkpoint(checkpoint_dir)这个方法获取。
  • 模型的y中有用到placeholder,在sess.run()的时候肯定要feed对应的数据,因此还要根据具体placeholder的名字,从graph中使用get_operation_by_name方法获取。
    代码实现
def predictIris(modelPath,data):
    """
    :param modelPath: 载入模型路径 
    :param data: 预测数据
    :return: None
    """
    with tf.Session() as sess:
        #
        new_saver = tf.train.import_meta_graph("model/iris_model.meta")
        new_saver.restore(sess,"model/iris_model")
        graph = tf.get_default_graph()
        x = graph.get_operation_by_name('data/x_pred').outputs[0]
        y = tf.get_collection("pred_network")[0]
        predict = np.argmax(sess.run(y,feed_dict={x:data}))
        if predict == 0:
            print("山鸢尾 Iris-Setosa")
        elif predict == 1:
            print("杂色鸢尾 Iris-versicolor")
        else:
            print("维吉尼亚鸢尾 Iris-virginica")

整体代码

import tensorflow as tf
import numpy as np
import pandas as pd
from keras.utils import np_utils
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # 不启动GPU

def dealIrisData(IrisDatapath):
    """
    :param IrisDatapath:传入数据集路径
    :return: 返回 训练特征集,测试特征集,训练标签集,测试标签集
    """
    # 读取数据集
    iris = pd.read_csv(IrisDatapath, header=None)

    # 数据集转化成数组
    iris = np.array(iris)
    # 提取特征集
    X = iris[:, 0:4]
    # 提取标签集
    Y = iris[:, 4]

    # One-Hot编码
    encoder = LabelEncoder()
    Y = encoder.fit_transform(Y)
    Y = np_utils.to_categorical(Y)

    x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3)
    return x_train,x_test,y_train,y_test
def getIrisModel(saveModelPath,step):
    """
    :param saveModelPath: 模型保存路径
    :param step: 训练步数
    :return: None
    """
    x_train, x_test, y_train, y_test = dealIrisData("iris.data")
    # 输入层
    with tf.variable_scope("data"):
        x = tf.placeholder(tf.float32,[None,4],name='x_pred')
        y_true = tf.placeholder(tf.int32,[None,3])
        # placeholder()函数是在神经网络构建graph的时候在模型中的占位,此时并没有把要输入的数据传入模型,
        # 它只会分配必要的内存。等建立session,在会话中,运行模型的时候通过feed_dict()函数向占位符喂入数据。

    # 无隐藏层

    # 输出层
    with tf.variable_scope("fc_model"):
        weight = tf.Variable(tf.random_normal([4,3],mean=0.0,stddev=1.0)) # 创建一个形状为[4,3],均值为0,方差为1的正态分布随机值变量
        bias = tf.Variable(tf.constant(0.0,shape=[3])) # 创建 张量为0,形状为3变量
        y_predict = tf.matmul(x,weight)+bias # 矩阵相乘
        tf.add_to_collection('pred_network', y_predict)  # 用于加载模型获取要预测的网络结构
        # Variable()创建一个变量
    # 误差
    with tf.variable_scope("loss"):
        loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true,logits=y_predict))
    # 优化器
    with tf.variable_scope("optimizer"):
        train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    # 准确率
    with tf.variable_scope("acc"):
        equal_list = tf.equal(tf.arg_max(y_true,1),tf.arg_max(y_predict,1))
        accuracy = tf.reduce_mean(tf.cast(equal_list,tf.float32))
    # 开始训练
    with tf.Session() as sess:
        saver = tf.train.Saver()
        sess.run(tf.global_variables_initializer())
        for i in range(step):
            _train = sess.run(train_op, feed_dict={x: x_train, y_true: y_train})
            _acc = sess.run(accuracy, feed_dict={x: x_train, y_true: y_train})
            print("训练%d步,准确率为%.2f" % (i + 1, _acc))
        print("测试集的准确率为%.2f" %sess.run(accuracy, feed_dict={x: x_test, y_true: y_test}))
        saver.save(sess, saveModelPath)
def predictIris(modelPath,data):
    """
    :param modelPath: 载入模型路径
    :param data: 预测数据
    :return: None
    """
    with tf.Session() as sess:
        #
        new_saver = tf.train.import_meta_graph("model/iris_model.meta")
        new_saver.restore(sess,"model/iris_model")
        graph = tf.get_default_graph()
        x = graph.get_operation_by_name('data/x_pred').outputs[0]
        y = tf.get_collection("pred_network")[0]
        predict = np.argmax(sess.run(y,feed_dict={x:data}))
        if predict == 0:
            print("山鸢尾 Iris-Setosa")
        elif predict == 1:
            print("杂色鸢尾 Iris-versicolor")
        else:
            print("维吉尼亚鸢尾 Iris-virginica")


if __name__ == '__main__':
    model_path = "model/iris_model"
    # 模型训练
    # model = getIrisModel(model_path,1000)
    # 模型预测
    # predictData = [[5.0,3.4,1.5,0.2]] # 填入数据集
    # predictIris(model_path,predictData)