详解Numpy stack()(沿着新的轴堆叠数组)函数的作用与使用方法

Numpy中的stack()函数可以将多个数组沿着指定的轴堆叠起来,生成一个新的多维数组。该函数主要有两个参数,第一个是待堆叠的数组,第二个是沿着哪个轴进行堆叠。常见的轴为0和1,分别表示沿着行和列进行堆叠。如果没有指定轴参数,则默认为0轴。

使用方法:

numpy.stack(arrays, axis=0)

参数解释:

  • arrays:需要堆叠的多个数组。
  • axis:沿着哪个轴进行堆叠,默认为0轴。

示例1:沿着列堆叠数组

假设有两个数组a和b,分别为:

a = [[1,2,3],
     [4,5,6]]

b = [[7,8,9],
     [10,11,12]]

现在我们想要将这两个数组沿着列(即第2个轴)进行堆叠,可以使用以下代码:

c = np.stack((a,b), axis=1)

这将会得到一个新的数组c,它的值为:

array([[[ 1,  2,  3],
        [ 7,  8,  9]],

       [[ 4,  5,  6],
        [10, 11, 12]]])

其中第一个轴代表行,第二个轴代表列,第三个轴代表单个数组中的元素。

示例2:沿着行堆叠数组

假设有两个数组a和b,分别为:

a = [[1,2,3],
     [4,5,6]]

b = [[7,8,9],
     [10,11,12]]

现在我们想要将这两个数组沿着行(即第1个轴)进行堆叠,可以使用以下代码:

c = np.stack((a,b), axis=0)

这将会得到一个新的数组c,它的值为:

array([[[ 1,  2,  3],
        [ 4,  5,  6]],

       [[ 7,  8,  9],
        [10, 11, 12]]])

其中第一个轴代表堆叠后的数组个数,第二个轴代表行,第三个轴代表单个数组中的元素。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:详解Numpy stack()(沿着新的轴堆叠数组)函数的作用与使用方法 - Python技术站

(1)
上一篇 2023年3月22日
下一篇 2023年3月22日

相关文章

  • 详解Numpy vstack()(垂直堆叠数组)函数的作用与使用方法

    Numpy vstack()函数是用于垂直堆叠数组(即按垂直方向组合数组)的函数。它将两个或多个数组沿垂直方向堆叠在一起,生成一个新的更大的数组。 使用方法 numpy.vstack(tup) 参数: tup: 这是垂直堆叠在一起的数组序列,它是一个元组,可以是两个或多个数组。 返回值: 该函数返回一个沿垂直方向堆叠的数组。 示例1 import numpy…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy var()(返回数组元素的方差)函数的作用与使用方法

    Numpy var()函数的作用是计算数组中元素的方差。方差是用来衡量数据分散程度的指标,具体来说是每个数据点与平均数之差的平方和的平均数,量度了取值分散程度的一个重要指标。 下面给出Numpy var()函数的具体用法及两个实例说明。 使用方法: numpy.var(arr, axis=None, dtype=None, out=None, ddof=0,…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy cov()(计算协方差矩阵)函数的作用与使用方法

    Numpy cov()是一个用于计算协方差矩阵的函数。协方差矩阵是一个描述随机变量之间关系的矩阵,通常用于统计学和机器学习中的数据分析。 本文将介绍Numpy cov()的作用与使用方法,并提供两个实例详细说明。 作用 将数据集X的协方差矩阵进行计算,然后返回该矩阵。协方差矩阵描述了变量之间的关系、方向和强度。除此之外,协方差矩阵还可用于数据降维、找到数据集…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy prod()(返回数组元素的乘积)函数的作用与使用方法

    简介 Numpy(NumPy官网)是Python中用于数值计算的重要库之一。其中,Prod()方法用于计算数组元素的乘积。在本文中,我们将深入探讨Numpy Prod()的作用与使用方法,包括其语法、参数、返回值等等。 Prod()语法 Prod()函数的语法如下: numpy.prod(a, axis=None, dtype=None, keepdims=…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy std()(返回数组元素的标准差)函数的作用与使用方法

    Numpy std()函数是用于计算数组中元素的标准差的函数。标准差是测量数据分布的一种度量,它是指各个数据点相对于数据集平均值的离散程度。在数据分析中,标准差被广泛使用,因为它是一种很好的识别异常值的工具。 使用方法: np.std(arr, axis=None, dtype=None, ddof=0,out=None, keepdims=False) 参…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy allclose()(判断数组是否在误差范围内相等)函数的作用与使用方法

    Numpy allclose()函数是用于比较两个数组是否非常接近的函数。它将比较两个数组的每个元素,如果两个元素差的绝对值小于或等于某个特定的容忍度,则它们被认为是相等的。 接下来我们来了解allclose()的具体使用。 语法格式 allclose()函数的语法格式为: numpy.allclose(a, b, rtol=1e-05, atol=1e-0…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy ifft()(快速傅里叶逆变换)函数的作用与使用方法

    Numpy的ifft()函数被用来计算信号的离散傅里叶反变换(IDFT)。通过ifft()函数,我们可以将一个给定的复数序列变换成离散时间域函数。 ifft()函数使用方法: numpy.fft.ifft(a, n=None, axis=-1, norm=None) 参数解释: a:序列(要进行IDFT变换的序列) n:序列大小,即采样点数。如果未指定,默认…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy isclose()(判断数组元素是否在误差范围内相等)函数的作用与使用方法

    Numpy isclose()函数的作用是比较两个数组或标量中的元素是否接近,根据公差和绝对误差,返回一个布尔值的值。这个函数在进行数值计算时非常有用,因为由于舍入误差或计算误差,我们可能无法使用相等操作符来判断两个值是否相等,这个函数可以避免误差造成的不必要的错误。 该函数的方法如下: numpy.isclose(a, b, rtol=1e-05, ato…

    Numpy函数大全 2023年3月22日
    00
合作推广
合作推广
分享本页
返回顶部