NumPy最常用数组的数学运算方法

NumPy最常用数组的数学运算方法

NumPy 数组的数学运算是 NumPy 中非常重要的一个特性。在 NumPy 中,数组可以进行一系列的数学运算,包括加减乘除、幂次方、三角函数、指数函数等。这些数学运算可以对整个数组进行操作,也可以对数组中的每个元素进行操作。下面就对 NumPy 数组的数学运算进行详细介绍。

NumPy四则运算

NumPy 数组的加减乘除运算与 Python 中的运算是类似的,可以使用 +、-、*、/ 运算符进行运算。需要注意的是,这些运算符作用于数组时,是逐元素进行运算的。下面是一些例子:

import numpy as np

# 加减乘除运算
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
c = a + b  # [5 7 9]
d = a - b  # [-3 -3 -3]
e = a * b  # [4 10 18]
f = b / a  # [4.  2.5 2. ]

幂次方运算

NumPy 中的幂次方运算使用 ** 运算符,也可以使用 np.power() 函数进行运算。下面是一些例子:

# 幂次方运算
a = np.array([2, 3, 4])
b = a ** 2  # [ 4  9 16]
c = np.power(a, 3)  # [ 8 27 64]

三角函数和指数函数

NumPy 中包括了一系列的三角函数和指数函数,这些函数都可以对数组进行操作。

下面是一些例子:

# 三角函数和指数函数
a = np.array([0, np.pi/2, np.pi])
b = np.sin(a)  # [0.0000000e+00 1.0000000e+00 1.2246468e-16]
c = np.cos(a)  # [ 1.000000e+00  6.123234e-17 -1.000000e+00]
d = np.tan(a)  # [ 0.00000000e+00  1.63312394e+16 -1.22464680e-16]
e = np.exp(a)  # [ 1.          4.48168907 23.14069263]

除此之外,还有以下三角函数:

  • np.arcsin(x):逐元素计算反正弦值。
  • np.arccos(x):逐元素计算反余弦值。
  • np.arctan(x):逐元素计算反正切值。
  • np.sinh(x):逐元素计算双曲正弦值。
  • np.cosh(x):逐元素计算双曲余弦值。
  • np.tanh(x):逐元素计算双曲正切值。
  • np.arcsinh(x):逐元素计算反双曲正弦值。
  • np.arccosh(x):逐元素计算反双曲余弦值。
  • np.arctanh(x):逐元素计算反双曲正切值。

使用代码如下:

import numpy as np

a = np.array([0, np.pi/4, np.pi/2])

print(np.arcsin(a))     # [0.         0.90333911        nan]
print(np.arccos(a))     # [1.57079633 0.66745722        nan]
print(np.arctan(a))     # [0.         0.66577375 1.00388482]
print(np.sinh(a))       #[0.         0.86867096 2.3012989 ]
...

数组逻辑运算

NumPy 中的逻辑运算主要包括以下几种:

  • np.logical_and(x1, x2, ...):逐元素进行逻辑 AND 操作。
  • np.logical_or(x1, x2, ...):逐元素进行逻辑 OR 操作。
  • np.logical_not(x):逐元素进行逻辑 NOT 操作。
  • np.logical_xor(x1, x2, ...):逐元素进行逻辑 XOR 操作。

示例代码:

import numpy as np

a = np.array([True, True, False, False])
b = np.array([True, False, True, False])

print(np.logical_and(a, b))  # [ True False False False]
print(np.logical_or(a, b))   # [ True True  True False]
print(np.logical_not(a))     # [False False  True  True]
print(np.logical_xor(a, b))  # [False  True  True False]

NumPy数组的代数运算

NumPy数组除了常用的数学运算,还支持代数运算,包括向量的点积、叉积、矩阵的乘法、求逆等。下面分别介绍这些运算。

向量的点积(dot product)

向量的点积是指两个向量对应位置的数相乘之后求和的结果。在NumPy中,可以使用numpy.dot()函数计算两个向量的点积。例如:

import numpy as np

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
c = np.dot(a, b)
print(c) # 32

向量的叉积(cross product)

向量的叉积是指两个向量所在平面的法向量。在NumPy中,可以使用numpy.cross()函数计算两个向量的叉积。注意,这个函数只能计算三维向量的叉积。例如:

import numpy as np

a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
c = np.cross(a, b)
print(c) # [-3  6 -3]

矩阵的乘法(matrix multiplication)

矩阵的乘法是指两个矩阵的乘积。在NumPy中,可以使用numpy.matmul()函数或者@运算符计算两个矩阵的乘积。例如:

import numpy as np

a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])
c = np.matmul(a, b)
print(c) # [[19 22]
         #  [43 50]]

矩阵的逆(matrix inverse)

矩阵的逆是指一个矩阵与它的逆矩阵相乘等于单位矩阵。在NumPy中,可以使用numpy.linalg.inv()函数计算矩阵的逆。例如:

import numpy as np

a = np.array([[1, 2], [3, 4]])
a_inv = np.linalg.inv(a)
print(a_inv) # [[-2.   1. ]
             #  [ 1.5 -0.5]]

需要注意的是,只有可逆矩阵才有逆矩阵。如果矩阵不可逆,numpy.linalg.inv()函数会抛出LinAlgError异常。

NumPy数组的统计函数

NumPy提供了很多数组的统计函数,用于计算数组的各种统计信息,比如最大值、最小值、均值、标准差、方差、中位数、百分位数等等。这些函数广泛应用于数据分析、机器学习等领域。

下面介绍一些常用的NumPy数组统计函数:

  1. np.max(): 计算数组的最大值。

  2. np.min(): 计算数组的最小值。

  3. np.mean(): 计算数组的均值。

  4. np.median(): 计算数组的中位数。

  5. np.std(): 计算数组的标准差。

  6. np.var(): 计算数组的方差。

  7. np.percentile(): 计算数组的百分位数。

除了上述函数,NumPy还提供了一些其他的数组统计函数,比如np.sum()用于计算数组元素的总和,np.prod()用于计算数组元素的乘积,np.cumsum()用于计算数组元素的累计和,np.cumprod()用于计算数组元素的累计乘积等等。

这些函数的使用方法类似,都可以传入一个数组作为参数,例如:

import numpy as np

a = np.array([1, 2, 3, 4, 5])
print(np.max(a)) # 输出:5
print(np.mean(a)) # 输出:3.0
print(np.percentile(a, 50)) # 输出:3.0

还可以在函数中指定axis参数,计算数组沿指定轴的统计值,例如:

b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
print(np.max(b, axis=0)) # 输出:[7 8 9]
print(np.mean(b, axis=1)) # 输出:[2. 5. 8.]

上述代码中,np.max(b, axis=0)计算的是数组b沿着第0个轴的最大值,也就是每一列的最大值,结果是一个长度为3的数组;np.mean(b, axis=1)计算的是数组b沿着第1个轴的均值,也就是每一行的均值,结果是一个长度为3的数组。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:NumPy最常用数组的数学运算方法 - Python技术站

(2)
上一篇 2023年3月1日 下午8:23
下一篇 2023年3月1日 下午8:51

相关文章

  • 基于Python中numpy数组的合并实例讲解

    以下是关于“基于Python中numpy数组的合并实例讲解”的完整攻略。 numpy数组的合并 在numpy中,可以使用numpy.concatenate()函数将两个或多个数组沿着指定轴合并成一个数组。该函数的语法如下: numpy.concatenate((a1, a2, …), axis=0) 参数说明: a1, a2, …:要合并的数组。 a…

    python 2023年5月14日
    00
  • numpy中的log和ln函数解读

    以下是关于“numpy中的log和ln函数解读”的完整攻略。 numpy中的log和ln函数简介 在NumPy中,log()函数用于计算以e为底的对数,ln()函数用于计算以10为底的对数。这两个函数都可以用于计算任意底数的对数。 numpy中的log和ln函数使用方法 下是log()和ln()函数的使用方法: numpy.log(x[, out]) num…

    python 2023年5月14日
    00
  • python scipy.spatial.distance 距离计算函数

    scipy.spatial.distance是Python中用于计算距离的模块,提供了多种距离计算函数。本文将详细讲解scipy.spatial.distance模块的使用方法,包括距离计算函数介绍和示例。 距离计算函数介绍 scipy.spatial.distance模块提供了多种距离计算函数,包括欧几里得距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离等。…

    python 2023年5月14日
    00
  • Numpy之random函数使用学习

    Numpy之random函数使用学习 NumPy是Python中用于科学计算的一个重要的库,它提供了高效的多维数组array和与之相关的量。本文将详细讲NumPy中的函数的使用方法,包括生成随机数、生成随机数组、随机整数等方法。 生成随机数 使用NumPy中的random()函数可以生成一个0到1之间的随机数,下面是一些示例: import numpy as…

    python 2023年5月14日
    00
  • 使用Numpy读取CSV文件,并进行行列删除的操作方法

    下面是关于“使用Numpy读取CSV文件,并进行行列删除的操作方法”的完整攻略,包含了两个示例。 使用Numpy读取CSV文件 使用Numpy可以方便地读取CSV文件。下面是一个示例,演示如何使用Numpy读取文件。 import numpy as np # 读取CSV文件 data = np.genfromtxt(‘data.csv’, delimiter…

    python 2023年5月14日
    00
  • Windows平台Python连接sqlite3数据库的方法分析

    Windows平台Python连接sqlite3数据库的方法分析 1. 确定 sqlite3 文件路径及数据库名称 在 Windows 平台上,我们可以使用 Python 自带的 sqlite3 库连接 sqlite3 数据库,但首先需要确定 sqlite3 文件路径及数据库名称。 我们首先需要下载 sqlite3 的预编译二进制文件并解压,然后将其添加到系…

    python 2023年5月13日
    00
  • Pandas 重塑(stack)和轴向旋转(pivot)的实现

    以下是关于“Pandas重塑(stack)和轴向旋转(pivot)的实现”的完整攻略。 背景 在数据分析和处理中,经常需要对数据进行重塑和轴向旋转。Pandas库提供了stack()和pivot()函数,可以方便地实现数据重和轴向旋转。本攻略将介绍如何使用Pandas库实现数据重塑和轴向旋转。 步骤 步一:导入必要的库 在开始之前,需要导入必要的库。以下是示…

    python 2023年5月14日
    00
  • Numpy数组的广播机制的实现

    下面是关于“Numpy数组的广播机制的实现”的完整攻略,包含了两个示例。 广播机制 广播机制是Numpy中的一种重要特性,它可以使不同形状的数组进行计算。在广播机制中,Numpy会自动将不同形状的数组转换为相同的形状,然后进行算。这种机制可以大大简化代码,提高计算效率。 广播机制的实现 广播机制的实现需要足以下两个条件: 数组的形状在某个维度上相同,或者其中…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部