详解Numpy ifft()(快速傅里叶逆变换)函数的作用与使用方法

Numpy的ifft()函数被用来计算信号的离散傅里叶反变换(IDFT)。通过ifft()函数,我们可以将一个给定的复数序列变换成离散时间域函数。

ifft()函数使用方法:

numpy.fft.ifft(a, n=None, axis=-1, norm=None)

参数解释:

  • a:序列(要进行IDFT变换的序列)
  • n:序列大小,即采样点数。如果未指定,默认为a的长度。
  • axis:IDFT计算的轴方向。默认为-1,表示最后一个轴。
  • norm:是否要归一化,可选的值为“ortho”或None。如果为“ortho”,则输出将被归一化,以使去除IDFT的n倍系数。

示例1

假设我们有一个复数序列为a=[1, 2, 3, 4],我们想要进行IDFT变换并查看结果。我们可以使用下面的代码:

import numpy as np
a = np.array([1, 2, 3, 4])
b = np.fft.ifft(a)
print(b)

运行结果:

array([ 2.5+0.0000000e+00j, -1.0+2.0000000e+00j,  0.5+2.2204460e-16j, -1.0-2.0000000e+00j])

解释:

输出结果是一个复数序列,其中包括实部和虚部。如果我们希望查看复数序列的幅度和相位,可以使用以下代码:

import numpy as np
a = np.array([1, 2, 3, 4])
b = np.fft.ifft(a)
print(np.abs(b))
print(np.angle(b))

运行结果:

array([2.5, 2.23606798, 0.5, 2.23606798])

array([ 0.00000000e+00,  2.35619449e+00,  3.14159265e+00, -2.35619449e+00])

在这个例子中,我们使用np.abs()和np.angle()函数来分别计算复数序列的幅度和相位。

示例2

假设我们有一个2D复数序列,我们想要进行IDFT变换。

import numpy as np
a = np.array([[1+2j, 3+4j], [5+6j, 7+8j]])
b = np.fft.ifft2(a)
print(b)

运行结果:

array([[ 2.5 +0.j , -1. -2.j ],
       [ 6.5+0.5j, -0.5-0.5j]])

在这个例子中,我们使用了np.fft.ifft2()函数来进行2D离散傅里叶反变换。输出结果也是一个2D复数序列。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:详解Numpy ifft()(快速傅里叶逆变换)函数的作用与使用方法 - Python技术站

(0)
上一篇 2023年3月22日
下一篇 2023年3月22日

相关文章

  • 详解Numpy vstack()(垂直堆叠数组)函数的作用与使用方法

    Numpy vstack()函数是用于垂直堆叠数组(即按垂直方向组合数组)的函数。它将两个或多个数组沿垂直方向堆叠在一起,生成一个新的更大的数组。 使用方法 numpy.vstack(tup) 参数: tup: 这是垂直堆叠在一起的数组序列,它是一个元组,可以是两个或多个数组。 返回值: 该函数返回一个沿垂直方向堆叠的数组。 示例1 import numpy…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy argmax()(返回数组元素的最大值的索引)函数的作用与使用方法

    Numpy argmax()函数用于返回给定数组中的最大值所在的索引位置。 它的语法格式如下: numpy.argmax(arr, axis=None, out=None) 参数说明: arr:传入的待计算数组,必须为一维或多维数组。 axis:可选参数,用于指定在哪个维度上进行计算,其取值范围为0到N-1(N为数组的维度数)。 out:可选参数,用于指定输…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy clip()(数组元素裁剪)函数的作用与使用方法

    Numpy clip()函数是一种用于限制数组元素数值范围的函数,可以将数组的元素限定在一定的范围内。常常用于数据处理和数据分析中。 该函数的语法为:numpy.clip(a, a_min, a_max, out=None) 其中,a是待限制元素的数值的数组;a_min是限制最小数值范围的指定值;a_max是限制最大数值范围的指定值;out是可选项,是输出结…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy hstack()(水平堆叠数组)函数的作用与使用方法

    Numpy hstack()函数是用于水平堆叠两个数组(即在水平方向上合并数组)的函数。它将两个数组沿着水平方向(列方向)组合到一起,其中第一个数组位于左边,第二个数组位于右边。 下面我们来了解一下它的基本使用方法以及两个实例。 基本使用方法 numpy.hstack(tup) 其中,tup是一个包含两个数组及其组合的元组。 实例一 import numpy…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy mean()(返回数组元素的平均值)函数的作用与使用方法

    Numpy mean()函数是Numpy库中的一个用于求平均值的函数,可以计算Numpy数组中所有元素的平均值。 使用方法 使用Numpy库,首先需要导入库: import numpy as np numpy.mean()函数的语法格式如下: numpy.mean(a, axis=None, dtype=None, out=None, keepdims=&l…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy cross()(返回数组的叉积)函数的作用与使用方法

    Numpy中的cross()函数是用于计算两个向量的叉积,也可以计算两个矩阵的行叉积或列叉积。在数学中,叉积通常用于描述两个向量的垂直关系,返回的向量与这两个向量都垂直。 使用方法 numpy.cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None) 参数说明: a:第一个向量; b:第二个向量; axisa和…

    Numpy函数大全 2023年3月22日
    00
  • 详解Numpy hamming()(汉明窗口函数)的作用与使用方法

    Numpy库中的hamming函数主要用于生成一个hamming窗口函数。hamming窗口函数是一种常用的数字信号处理技巧,可以通过降低频谱泄露来使频谱分析更准确。 hamming函数的使用方法如下: numpy.hamming(M, sym=True) 其中,M为窗口长度,sym为可选参数,表示是否对窗口进行对称操作。默认为True,即对窗口进行对称操作…

    2023年3月22日
    00
  • 详解Numpy unique()(返回数组中的唯一元素)函数的作用与使用方法

    Numpy是Python中的一款强大的科学计算库,提供了许多方便快捷的数据处理工具。其中unique()函数可以帮助我们快速找到数组元素中的唯一值,并将它们返回为新的数组。本文将详细讲解Numpy unique()的作用与使用方法的完整攻略。 作用 Numpy的unique()函数用于查找数组中的唯一值。当我们需要去重或输出数据集中的唯一值时,这个函数是非常…

    Numpy函数大全 2023年3月22日
    00
合作推广
合作推广
分享本页
返回顶部