NLP
-
用于NLP的7大免费数据集!
在开始为自然语言处理任务进行深度学习时,您需要练习数据集。 最好使用可以快速下载的小型数据集,并且不会花费太长时间来拟合模型。此外,使用易于理解和广泛使用的标准数据集也很有帮助,这样您就可以比较您的结果以查看您是否正在取得进展。 在这篇文章中,您将发现一套用于自然语言处理任务的标准数据集,您可以在开始使用深度学习时使用它们。 概述 这篇文章分为7个部分,根据…
-
自然语言处理神经网络模型入门概述
深度学习对自然语言处理领域产生了巨大影响。 但是,作为初学者,您从哪里开始? 深度学习和自然语言处理都是一个巨大的领域。每个领域需要关注的突出方面是什么,深度学习对NLP的哪些领域影响最大? 在这篇文章中,您将发现有关自然语言处理深度学习相关的入门知识。 阅读这篇文章后,您将知道: 对自然语言处理领域影响最大的神经网络架构。 可以通过深度学习成功解决的自然语…
-
(实战篇)使用Python清理机器学习的文本数据
在自然语言处理(NLP)的过程中,我们不可能直接从原始文本转到拟合机器学习或深度学习模型,我们必须要首先清理文本,这意味着将其拆分为单词并处理标点符号和大小写。 事实上,您可能需要使用一整套文本准备方法,方法的选择实际上取决于您的自然语言处理任务。 在本教程中,您将了解如何清理和准备文本,以便使用机器学习进行建模。具体内容如下: 从如何通过开发自己的非常简单…
-
(实战篇)从头开发基于深度学习的照片说明器!
字幕生成是一个具有挑战性的人工智能问题,其中必须为给定的照片生成文本描述。 它既需要来自计算机视觉的方法来理解图像的内容,也需要来自自然语言处理领域的语言模型来将对图像的理解按正确的顺序转化为文字。最近,深度学习方法在这个问题的例子上取得了最先进的结果。 深度学习方法已经在字幕生成问题上展示了最先进的结果。这些方法最令人印象深刻的是,可以定义单个端到端模型来…
-
2023年最火爆的5 个NLP模型,ChatGPT也在用!
自然语言处理 (NLP) 是 人工智能 最具影响力的领域之一,它已经催生了聊天机器人、语音助手、翻译器和大量其他日常实用工具等技术,最近火爆的 ChatGPT 就是基于自然语言处理相关算法搭建的! 其实,自然语言处理的研究在 1950 年代就已经开始了。最早的尝试是从俄语到英语的自动翻译,并为未来的研究奠定了基础。大约在同一时间,图灵测试也验证了机器可以发展…
-
潜在语义分析(LSA)和 潜在狄利克雷分配 (LDA)简介
一位杰出的科学家曾经引用过成为自然语言处理基础的一句话: “计算机非常快、准确和愚蠢;人类非常慢、不准确和聪明;他们在一起的力量超乎想象。” -爱因斯坦 尽管被称为最先进的自然语言处理 技术的新词嵌入技术能够在一个模型上执行多个 NLP 任务,但在这些模型出现并永远改变游戏规则之前,我们已经有了有效的信息检索方法和其他 NLP 问题,其中两种方法包括潜在语义…
-
自然语言处理:NLP工作原理与应用
NLP(自然语言处理,英文名 Natural Language Processing)是一种从文本中查找信息的方法,使其能够像人类理解的一样,被机器理解。 众所周知,机器学习的目标是为机器提供类似人脑的能力。NLP 就是为了向机器提供与我们的人脑相同的能力,即能够理解文本和语音。 我们人类通过电子邮件、网页、应用程序等阅读了非常多的文本信息。如果机器能够理解…