Codeforces Round 867 (Div. 3)

A. TubeTube Feed

分析:

从所有a[i]+i-1<=t的选择种取个max即可

code:

#include <bits/stdc++.h>
using namespace std;
 
const int N = 55;
int a[N], b[N];
 
 
int main()
{
    std::ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);
	
	int t;
	cin >> t;
	
	while (t --)
	{
		int n, m;
		cin >> n >> m;
		
		for (int i = 0; i < n; i ++)
			cin >> a[i];
			
		for (int i = 0; i < n; i ++)
			cin >> b[i];
			
		int s = 0, res = 0, idx = -1;
		bool flag = false;
		
		for (int i = 0; i < n; i ++)
		{
			if (s + a[i] <= m)
			{
				flag = true;
				if (b[i] > res)
				{
					res = b[i];
					idx = i + 1;
				}
			}
			s ++;	
		}
		
		if (!flag)
			cout << -1 << endl;
		else
			cout << idx << endl;
	}    
	
    return 0;
}

B. Karina and Array

分析:

实际上就是取同符号乘积的最大值

code:

#include <bits/stdc++.h>
using namespace std;
 
const int N = 2e5 + 5;
int a[N], b[N];
 
typedef long long LL;
 
int main()
{
    std::ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);
	
	int t;
	cin >> t;
	
	while (t --)
	{
		int n;
		cin >> n;
		
		if (n == 2)
		{
			int num1, num2;
			cin >> num1 >> num2;
			
			cout << (LL)num1 * num2 << endl;
		}
		else
		{
			int cnt1 = 0, cnt2 = 0;
			
			for (int i = 0; i < n; i ++)
			{
				int x;
				cin >> x;
			
				if (x >= 0)
					a[cnt1 ++] = x;
				else
					b[cnt2 ++] = x;
			}
		
			sort(a, a + cnt1);
			sort(b, b + cnt2);
			
			LL res;
			if (cnt1 >= 2 && cnt2 >= 2)
			{
				res = max((LL)b[0] * b[1], (LL)a[cnt1 - 2] * a[cnt1 - 1]);
			}
			else if (cnt1 >= 2 && cnt2 < 2)
				res = (LL)a[cnt1 - 2] * a[cnt1 - 1];
			else if (cnt1 < 2 && cnt2 >= 2)
				res = (LL)b[0] * b[1];
			
			cout << res << endl;
		}
	}
	
    return 0;
}

C. Bun Lover

分析:

找规律,发现结果与边长n的关系是:res = n * (n + 3) - (n - 2)

code:

#include <bits/stdc++.h>
using namespace std;
 
const int N = 2e5 + 5;
int a[N], b[N];
 
typedef long long LL;
 
int main()
{
    std::ios::sync_with_stdio(false);
    cin.tie(0), cout.tie(0);
	
	int t;
	cin >> t;
	
	while (t --)
	{
		LL n;
		cin >> n;
		
		cout << n * (n + 3) - (n - 2) << endl;
	}
	
    return 0;
}

D. Super-Permutation

分析:

①当n为奇数时,除了1其他均无解
②当n为偶数时,我们可以构造一个形如n,1,n - 2,3,...的数列
首先我们可以发现n必定出现在起始位置。如果n不在起始位置,假设在位置i,那么s[i - 1] % n == (s[i - 1] + n) % n = s[i] % n。
接着,考虑构造方式。最方便的即是考虑让序列取模结果为:0,1,-1,2,-2...(-1取模意义下溢出实际上就是n - 1),按上述结果形式构造的序列n,1,n - 2,3,...即可满足所有条件
最后从结果来看就是n在偶数位递减,1在奇数位递增。

code:

#include <bits/stdc++.h>
using namespace std;
 
const int N = 2e5 + 5;
int a[N];
 
int main()
{
	std::ios::sync_with_stdio(false);
	cin.tie(0), cout.tie(0);
	
	int t;
	cin >> t;
	
	while (t --)
	{
		int n;
		cin >> n;
		
		if (n == 1)
			cout << 1 << endl;
		else if (n & 1)
			cout << -1 << endl;
		else
		{
			for (int i = 0, j = n; i < n; i += 2, j -= 2)
				a[i] = j;
			for (int i = 1, j = 1; i < n; i += 2, j += 2)
				a[i] = j;
			for (int i = 0; i < n; i ++)
				cout << a[i] << " ";
			cout << endl;
		}
	}
	
	return 0;
}

E. Making Anti-Palindromes

分析:

①当n为奇数时:根据定义无解。
②当n为偶数时:
当某个字符出现的次数大于n / 2时,根据容斥原理,一定存在s[i] = s[n - i + 1]。
若不存在上述情况则一定有解,考虑如何处理对称字符:倘若存在形如..a..b..b..a的字符对我们优先选择交换a和b,这样一次操作可以处理两对字符,否则将对称对形如..a..b..d..a的情况交换a和d,一次操作处理一对字符。统计出现次数最多的字符对,其出现次数记为cnt1,所有字符对总数量记为cnt2,优先处理cnt1,所以当cnt1 <= cnt2 - cnt1时,答案即cnt2 / 2,否则答案即cnt1

code:

#include <bits/stdc++.h>
using namespace std;
 
const int N = 27;
int h[N], h2[N];
 
int main()
{
	std::ios::sync_with_stdio(false);
	cin.tie(0), cout.tie(0);
	
	int t;
	cin >> t;
	
	while (t --)
	{
		int n;
		cin >> n;
		string s;
		cin >> s;
		
		if (n & 1)
			cout << -1 << endl;
		else
		{
			bool check = true;
			memset(h2, 0, sizeof h2);
			memset(h, 0, sizeof h);
			
			for (int i = 0; i < n; i ++)
			{
				h2[s[i] - 'a'] ++;
				if (h2[s[i] - 'a'] > n / 2)
				{
					check = false;
					break;
				}
			}
			
			
			if (check)
			{
				int Max = 0, cnt = 0;
				for (int i = 0, j = n - 1; i < n / 2; i ++, j --)
				{
					if (s[i] == s[j])
					{
						h[s[i] - 'a'] ++;
						Max = max(Max, h[s[i] - 'a']);
						cnt ++;
					}
				}
				
				if (Max <= cnt - Max)
					cout << (cnt + 1) / 2 << endl;
				else
					cout << Max << endl;
			}
			else
				cout << -1 << endl;
		}
	}
	
	return 0;
}

原文链接:https://www.cnblogs.com/XiongTingyang/p/17372897.html

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Codeforces Round 867 (Div. 3) - Python技术站

(0)
上一篇 2023年5月4日
下一篇 2023年5月5日

相关文章

  • Python三数之和的实现方式

    Python三数之和的实现方式 三数之和是一道经典的算法问题,其目标是在一个数组中找到三个数,使它们为0。本文将介绍两种Python实现三数之和的方法。 方法一:暴力枚举 最简单的方法是使用重循环枚举所有可能的三元组,并检查它们的和是否为0。这种方法的时间复杂度为O(n^3),不用于大型数组。 下面是一个示例,用于演示如何使用暴力枚举实现三数之和。 def …

    python 2023年5月14日
    00
  • 10个Python实现的最频繁使用的聚类算法

    10个Python实现的最频繁使用的聚类算法 聚类算法是一种无监督学习算法,它将数据集中对象分成不同的组或簇,使得同一组内的对象相似度较高,同组之间的对象相似度较低。Python中有许多聚类算法的实现,本文将详细讲解10个Python实现最频繁使用的聚类算法的完整攻略,包括算法原理、Python实现过程和示例说明。 1. K-Means算法 K-Means算…

    python 2023年5月13日
    00
  • Java数据结构之HashMap和HashSet

    Java数据结构之HashMap和HashSet HashMap 介绍 HashMap是一种基于哈希表实现的Map集合,它提供了快速的插入、查询、删除操作。HashMap中存储的元素是以键值对(Key-Value)的形式存储的,其中Key是用来从Map中查找值的索引,Value是存储在Map中的值。HashMap中的Key和Value都可以为null,但是在…

    数据结构 2023年5月17日
    00
  • Python 十大经典排序算法实现详解

    下面是关于“Python 十大经典排序算法实现详解”的完整攻略。 1. 十大经典排序算法 排序法是计算机科学中最基本的算法之一,是 Python 开发者必须掌握的算法之一。Python 中常见的算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序、计数排序、桶排序、基数排序和鸽巢排序。下将逐一介绍这些算法的实现方法。 1.1 冒泡排序 冒泡排序算…

    python 2023年5月13日
    00
  • Java深入了解数据结构之优先级队列(堆)

    Java深入了解数据结构之优先级队列(堆) 本文将会详细介绍Java中的优先级队列,即堆数据结构的实现过程和使用方法。 什么是优先级队列? 在介绍优先级队列之前,我们需要了解先进先出队列(FIFO Queue)和后进先出队列(LIFO Queue,或称栈)的概念。FIFO Queue按照元素的插入顺序依次出队;而LIFO Queue则按照元素的插入顺序反向出…

    数据结构 2023年5月17日
    00
  • python机器学习库常用汇总

    以下是关于“Python机器学习库常用汇总”的完整攻略: 简介 Python是一种流行的编程语言,也是机器学习领域中最常用的语言之一。Python机器学习库提供了许多工具和算法,可以帮助开发人员快速构建和训练机器学习模型。在本教程中,我们将介绍Python机器学习库的常用汇总,并提供两个示例。 常用库 以下是Python机器学习库的常用汇总: NumPy:用…

    python 2023年5月14日
    00
  • Python实现常见的回文字符串算法

    以下是关于“Python实现常见的回文字符串算法”的完整攻略: 简介 回文字符串是指正着读和倒着读都一样的字符串。在本教程中,我们将介绍如何使用Python实现常见的回文字符串算法,并提供两个示例。 算法1:双指针法 双指针法是一种常见的回文字符串算法,它使用两个指针从字符串的两端开始扫描,如果两个指针指向的字符相同,则继续向中间移动,否则返回false。 …

    python 2023年5月14日
    00
  • Python数据结构与算法之图的基本实现及迭代器实例详解

    下面是详细讲解“Python数据结构与算法之图的基本实现及迭代器实例详解”的完整攻略,包含两个示例说明。 图的基本实现 图是由节点和边组成的数据结构。在Python中,可以使用字典和集合来表示图。字典用于存储节点和它们的邻居,集合用于存储节点。 下面是一个简单的Python实现: class Graph: def __init__(self): self.n…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部