在pytorch中,即使是有GPU的机器,它也不会自动使用GPU,而是需要在程序中显示指定。调用model.cuda(),可以将模型加载到GPU上去。这种方法不被提倡,而建议使用model.to(device)的方式,这样可以显示指定需要使用的计算资源,特别是有多个GPU的情况下。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pytorch中 model.cuda的作用 - Python技术站
在pytorch中,即使是有GPU的机器,它也不会自动使用GPU,而是需要在程序中显示指定。调用model.cuda(),可以将模型加载到GPU上去。这种方法不被提倡,而建议使用model.to(device)的方式,这样可以显示指定需要使用的计算资源,特别是有多个GPU的情况下。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pytorch中 model.cuda的作用 - Python技术站