本篇介绍卷积层的线性部分
一、与全连接层相比卷积层有什么优势?
卷积层可以节省参数,因为卷积运算利用了图像的局部相关性——分析出一小片区域的特点,加上Pooling层(汇集、汇聚),从附近的卷积结果中再采样选择一些高价值的信息,让特征向少而精的方向前进。
全连接层相当于考虑全局(整张图像)的特征
二、卷积的另一种解释
傅里叶变换:将数据从空间域的展示形式转变到频率域的形式。
理解:图像比作一道做好的菜,傅里叶变换就是找出这道菜具体 的配料及各种配料的用量。
图像中,低频信息是大体轮廓(整体),高频信息是图中物体的纹理特征
若A, B是矩阵,下面两式是等价的
C=conv2(A, B)
C=IFFT(FFT(A) * FFT(B)) #这里*是“元素级别的乘法”
对卷积核做傅里叶变换,可以看出高/低频信号的强度,
由于最终要进行元素级的乘法,如果卷积核在某个频率的数值比较低,经过乘法后的输入数据在这个频率的数据也会变小。滤波核在某个频率的数值为0,说明卷积算法计算后会舍弃这部分信息。
Gabor Filter,保留高频舍弃低频,一些文章宣称自己的模型第一层的参数像Gabor Filter。
所以,从傅里叶变换来看,卷积层的意义——
分离低频和高频信息,使它们能够被分别处理。
三、卷积层的反向传播
计算参数:
1卷积层输入图像(数据)X对目标函数的偏导数
2卷积层线性部分参数W对目标函数的偏导数
解法
A:按卷积定义求解,需要计算:
1前向计算图
2下层Loss
3本层w导数
B:转换后的解法,软件库中常用套路
将卷积运算转换为矩阵和向量的点积——
输入数据被转换成了一个size更大的矩阵(为了适应矩阵式的卷积操作有些元素需要重复出现)
卷积核被转换成了一个向量
软件库选择矩阵式解法的原因:矩阵乘法运算经过多年的研究,运算效率非常有保障。按定义的卷积运算性能较差。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:CNN卷积层基础:特征提取+卷积核+反向传播 - Python技术站