原博客搬移到:https://blog.csdn.net/u013171226/article/details/107680285
import os,cv2,shutil import numpy as np import random #对比度和亮度 def Contrast_and_Brightness(alpha, beta, img): blank = np.zeros(img.shape, img.dtype) # dst = alpha * img + beta * blank dst = cv2.addWeighted(img, alpha, blank, 1-alpha, beta) return dst def darker(image,percetage): image_copy = image.copy() w = image.shape[1] h = image.shape[0] #get darker for xi in range(0,w): for xj in range(0,h): image_copy[xj,xi,0] = int(image[xj,xi,0]*percetage) image_copy[xj,xi,1] = int(image[xj,xi,1]*percetage) image_copy[xj,xi,2] = int(image[xj,xi,2]*percetage) return image_copy def brighter(image, percetage): w = image.shape[1] h = image.shape[0] #get brighter for xi in range(0,w): for xj in range(0,h): image[xj,xi,0] = np.clip(int(image[xj,xi,0]*percetage),a_max=255,a_min=0) image[xj,xi,1] = np.clip(int(image[xj,xi,1]*percetage),a_max=255,a_min=0) image[xj,xi,2] = np.clip(int(image[xj,xi,2]*percetage),a_max=255,a_min=0) return image #旋转 def rotate(image, angle, scale=1): w = image.shape[1] h = image.shape[0] #rotate matrix M = cv2.getRotationMatrix2D((w/2,h/2), angle, scale) #rotate image = cv2.warpAffine(image,M,(w,h)) return image #高斯噪声 def addGaussianNoise(image,percetage): G_Noiseimg = image.copy() w = image.shape[1] h = image.shape[0] G_NoiseNum=int(percetage*image.shape[0]*image.shape[1]) for i in range(G_NoiseNum): temp_x = np.random.randint(0,h) temp_y = np.random.randint(0,w) G_Noiseimg[temp_x][temp_y][np.random.randint(3)] = np.random.randn(1)[0] return G_Noiseimg #翻转 def flip(img,angle): fliped=cv2.flip(img,angle) return fliped def img_augmentation(path): if path[-3:]=="jpg": print("ok") img=cv2.imread(path) c=random.uniform(0.7,1.3) b=random.uniform(-60,60) c_img=Contrast_and_Brightness(c,0,img) b_img=Contrast_and_Brightness(1,b,img) #b=random.uniform(1,1.5) #img_brighter=brighter(img,b) #d=random.uniform(0.6,0.95) #img_dark=darker(img,d) angele_list=[-180,-90,-45,45,90,180] a=random.choice(angele_list) rotate_img=rotate(img,a) flip_list=[-1,0,1] f_p=random.choice(flip_list) flip_img=flip(img,f_p) (file_path,pic_name)=os.path.split(path) b_name="bright_"+pic_name #亮度 c_name="contrast_"+pic_name #对比度 r_name="rotate_"+pic_name #旋转 f_name="flip_"+pic_name #翻转 print(os.path.join(file_path,b_name)) print(os.path.join(file_path,c_name)) cv2.imwrite(os.path.join(file_path,b_name),b_img) cv2.imwrite(os.path.join(file_path,c_name),c_img) cv2.imwrite(os.path.join(file_path,r_name),rotate_img) cv2.imwrite(os.path.join(file_path,f_name),flip_img) if __name__ == "__main__": path=''#改成自己的path # for dir_name in os.listdir(path): # dir_path=os.path.join(path,dir_name) # for dir1_name in os.listdir(dir_path): # dir1_path=os.path.join(dir_path,dir1_name) for image_name in os.listdir(path): image_path = os.path.join(path, image_name) print(image_path) img_augmentation(image_path)
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:深度学习的数据增强(亮度,对比度,旋转) - Python技术站