Matplotlib.pyplot模块详解

Matplotlib.pyplot是Python绘图库Matplotlib的一个子模块,提供了类似于MATLAB绘图系统的命令风格接口,可以方便快速地绘制各种静态图形。

下面是matplotlib.pyplot常用的函数:

plot()函数

用于绘制直线、曲线,可以指定线条的颜色、宽度、样式等参数,例如:

import matplotlib.pyplot as plt
import numpy as np

# 创建数据
x = np.linspace(-np.pi, np.pi, 256)
y = np.sin(x)

# 绘制正弦函数曲线
plt.plot(x, y, color='blue', linewidth=2.5, linestyle='-', label='sin(x)')

# 设置标题、坐标轴标签、图例等
plt.title('Sin curve')
plt.xlabel('x-axis')
plt.ylabel('y-axis')
plt.legend(loc='upper left')

# 显示图形
plt.show()

运行结果:

Matplotlib.pyplot模块详解

scatter()函数

用于绘制散点图,可以指定散点的大小、颜色、形状等参数,例如:

import matplotlib.pyplot as plt
import numpy as np

# 生成数据
x = np.random.rand(50)
y = np.random.rand(50)
colors = np.random.rand(50)
sizes = 1000*np.random.rand(50)

# 绘制散点图
plt.scatter(x, y, s=sizes, c=colors, alpha=0.5)

# 设置标题、坐标轴标签
plt.title('Random scatter')
plt.xlabel('x-axis')
plt.ylabel('y-axis')

# 显示图形
plt.show()

运行结果:

Matplotlib.pyplot模块详解

bar()函数

用于绘制柱状图,可以指定柱子的宽度、颜色、透明度等参数,例如:

import matplotlib.pyplot as plt
import numpy as np

# 生成数据
x = np.array(['A', 'B', 'C', 'D', 'E'])
y = np.array([20, 35, 30, 25, 40])

# 绘制柱状图
plt.bar(x, y, width=0.5, color='green', alpha=0.5)

# 设置标题、坐标轴标签
plt.title('Bar chart')
plt.xlabel('Categories')
plt.ylabel('Values')

# 显示图形
plt.show()

运行结果:

Matplotlib.pyplot模块详解

pie()函数

用于绘制饼图,可以指定各部分的占比、颜色、标签等参数,例如:

import matplotlib.pyplot as plt
import numpy as np

# 生成数据
data = np.array([10, 20, 30, 40])
labels = np.array(['A', 'B', 'C', 'D'])
colors = np.array(['red', 'blue', 'green', 'orange'])

# 绘制饼图
plt.pie(data, labels=labels, colors=colors, autopct='%1.1f%%')

# 设置标题
plt.title('Pie chart')

# 显示图形
plt.show()

运行结果:

Matplotlib.pyplot模块详解

imshow()函数

用于绘制图像,可以指定图片的像素值、色彩映射等参数,例如:

import matplotlib.pyplot as plt
import numpy as np

# 生成数据
img = np.random.rand(50, 50)

# 绘制图像
plt.imshow(img, cmap='gray')

# 隐藏坐标轴
plt.axis('off')

# 显示图形
plt.show()

运行结果:

Matplotlib.pyplot模块详解

hist()函数

用于绘制直方图,可以指定数据的分布情况、柱子的数量、颜色等参数,例如:

import matplotlib.pyplot as plt
import numpy as np

# 生成数据
data = np.random.randn(1000)

# 绘制直方图
plt.hist(data, bins=30, color='green', edgecolor='black')

# 设置标题、坐标轴标签
plt.title('Histogram')
plt.xlabel('Values')
plt.ylabel('Frequency')

# 显示图形
plt.show()

运行结果:

Matplotlib.pyplot模块详解

subplots()函数

用于绘制子图,可以自由设置子图的布局、间距、共享轴等参数,例如:

import matplotlib.pyplot as plt
import numpy as np

# 创建数据
x = np.linspace(-np.pi, np.pi, 256)
y_sin = np.sin(x)
y_cos = np.cos(x)

# 创建两个子图
fig, ax = plt.subplots(nrows=1, ncols=2, sharey=True)
ax[0].plot(x, y_sin, color='blue', linewidth=2.5, linestyle='-')
ax[1].plot(x, y_cos, color='green', linewidth=2.5, linestyle='-')

# 设置标题、坐标轴标签
ax[0].set_title('Sin curve')
ax[0].set_xlabel('x-axis')
ax[0].set_ylabel('y-axis')
ax[1].set_title('Cos curve')
ax[1].set_xlabel('x-axis')

# 显示图形
plt.show()

运行结果:

Matplotlib.pyplot模块详解
以上就是Matplotlib.pyplot模块的基本使用方法和常用函数,通过这些函数的组合可以绘制出各种静态图形。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Matplotlib.pyplot模块详解 - Python技术站

(3)
上一篇 2023年3月7日 下午8:16
下一篇 2023年3月7日 下午8:54

相关文章

  • 详解Matplotlib绘制双轴图的使用方法

    Matplotlib可以绘制双轴图,又称为双y轴图,是一种常见的图表类型。它允许在一个坐标系中同时绘制两个y轴,使得可以同时展示两个不同的数据集或变量之间的关系。 下面介绍如何使用Matplotlib绘制双轴图。 导入相关库 import numpy as np import matplotlib.pyplot as plt 创建数据 x = np.aran…

    2023年3月7日
    00
  • Matplotlib绘制散点图方法详解

    Matplotlib是一个Python的绘图库,它可以帮助我们轻松地创建各种各样的图表,包括散点图。 在Matplotlib中,我们可以使用scatter()函数来绘制散点图,该函数的基本用法如下: import matplotlib.pyplot as plt x = [1,2,3,4,5] y = [2,4,6,8,10] # 绘制散点图 plt.sca…

    2023年3月7日
    00
  • Matplotlib绘制直方图方法详解

    Matplotlib是Python中常用的数据可视化库之一,可以绘制多种类型的图表。直方图是Matplotlib最常用的一种图表,用于表示数据的分布情况。 直方图通常用于显示数据的分布情况,通过将数据分成若干个组(也称为“箱子”或“柱子”),并将每个组内的数据数量绘制成一个条形,来表示数据在各个范围内的分布情况。直方图可以清晰地展示出数据的集中趋势、离散程度…

    2023年3月7日
    00
  • Matplotlib绘制箱型图方法详解

    箱型图(box plot)是一种用于展示一组数据分散情况的图形方式。箱型图能够直观地反映数据的中位数、四分位数、最小值、最大值以及异常值等统计量。 在Matplotlib中,使用boxplot()函数可以绘制箱型图,其参数含义如下: x:数据集,可以是numpy数组,也可以是pandas序列; notch:是否绘制缺口形式的箱型图,默认为False; sym…

    2023年3月8日
    00
  • Matplotlib subplot()函数使用方法详解

    Matplotlib subplot()函数是用于在同一个图形窗口中创建多个子图的函数。它的常用语法如下: subplot(nrows, ncols, plot_number) 其中,nrows表示子图的行数,ncols表示子图的列数,plot_number表示当前子图的位置。 subplot()函数创建多个子图 下面提供了一个示例,说明如何使用subplo…

    2023年3月7日
    00
  • 详解Matplotlib设置坐标轴格式的使用方法

    在Matplotlib中,可以通过set_xticklabels()和set_yticklabels()方法来设置坐标轴的刻度标签格式。 以下是使用示例: import matplotlib.pyplot as plt # 创建数据 x = [1, 2, 3, 4, 5] y = [2.3, 4.5, 1.2, 3.6, 2.8] # 创建图像 fig, a…

    2023年3月7日
    00
  • Windows系统Matplotlib的下载和安装

    Matplotlib 是 Python 的第三方绘图库,它非常类似于 MATLAB。在使用 Matplotlib 软件包之前,需要对其进行安装。本节以 Windows10 系统为例,介绍 Matplotlib 的几种安装方式。 使用pip安装 使用 Python 包管理器 pip 来安装 Matplotlib 是一种最简单的方式。打开 CMD 命令提示符窗口…

    2023年3月7日
    00
  • 使用Matplotlib的第一个绘图程序

    本节学习第一个 Matplotlib 绘图程序,如何使用 Matplotlib 绘制一个简单的折线图。 第一个绘图程序 以下是使用Matplotlib绘制简单折线图的示例代码: import matplotlib.pyplot as plt # 准备数据 x = [1, 2, 3, 4, 5] y = [2, 4, 6, 8, 10] # 创建画布 fig,…

    2023年3月7日
    00
合作推广
合作推广
分享本页
返回顶部