放弃使用pytorch,学习caffe
本文仅记录个人观点,不免存在许多错误
Caffe 学习
caffe模型生成需要如下步骤
- 编写network.prototxt
- 编写solver.prototxt
- caffe train -solver=solver.prototxt
network.prototxt编写
在caffe中,Net由Layer构成,其中数据由Blob进行传递
network编写就是组织layer
关于layer如何编写,参考caffe.proto
这里写出layer一般形式
layer{
name: "layer name"
type: "layer type"
bottom: "bottom blob"
top: "top blob"
param{
...
}
include{ phase: ... }
exclude{ phase: ... }
# 对某一type的layer参数, 这里以内积层为例
inner_product_param{
num_output: 64
weight_filler{
type: "xavier"
}
bias_filler{
type: "constant"
value: 0
}
axis=1
}
}
在这里简要说一下我们的目的,
通过中文分词rnn和贝叶斯分类器实现一个垃圾信息处理的功能
这里直接附上我的network好了,反正没人看: (
# project for chinese segmentation
# T: 64, batch: 64
# label[T*batch, 1, 1, 1] cont[T*batch, 1, 1, 1]=0 or 1
# data[T*batch, 1, 1, 1] ->
# embed[T*batch, 2000, 1, 1](drop&reshape) -> [T, batch, 2000, 1]
# lstm[T, batch, 256, 1](drop) ->
# ip[T, batch, 64, 1](relu) ->
# ip[T, batch, 5, 1] ->
# Accuracy & SoftMaxWithLoss
# for output: 0-none, 1-Signal, 2-Begin, 3-Middle, 4-End
name: "Segment"
# train data
layer{
name: "train_data"
type: "HDF5Data"
top: "data"
top: "label"
top: "cont"
include{ phase: TRAIN }
hdf5_data_param{
source: "/home/tanglizi/caffe/projects/data_segment/h5_test.txt"
batch_size: 4096
shuffle: true
}
}
# test data
layer{
name: "test_data"
type: "HDF5Data"
top: "data"
top: "label"
top: "cont"
include{ phase: TEST }
hdf5_data_param{
source: "/home/tanglizi/caffe/projects/data_segment/h5_test.txt"
batch_size: 4096
shuffle: true
}
}
# embed
layer{
name: "embedding"
type: "Embed"
bottom: "data"
top: "embedding"
param{
lr_mult: 1
}
embed_param{
input_dim: 14000
num_output: 2000
weight_filler {
type: "uniform"
min: -0.08
max: 0.08
}
}
}
# embed-drop
layer{
name: "embed-drop"
type: "Dropout"
bottom: "embedding"
top: "embed-drop"
dropout_param{
dropout_ratio: 0.05
}
}
# reshape
# embed
# [T*batch, 2000, 1, 1] ->
# [T, batch, 2000, 1]
layer{
name: "embed-reshape"
type: "Reshape"
bottom: "embed-drop"
top: "embed-reshaped"
reshape_param{
shape{
dim: 64
dim: 64
dim: 2000
}
}
}
# label
layer{
name: "label-reshape"
type: "Reshape"
bottom: "label"
top: "label-reshaped"
reshape_param{
shape{
dim: 64
dim: 64
dim: 1
}
}
}
# cont
layer{
name: "cont-reshape"
type: "Reshape"
bottom: "cont"
top: "cont-reshaped"
reshape_param{
shape{
dim: 64
dim: 64
}
}
}
# lstm
layer{
name: "lstm"
type: "LSTM"
bottom: "embed-reshaped"
bottom: "cont-reshaped"
top: "lstm"
recurrent_param{
num_output: 256
weight_filler{
# type: "xavier"
type: "uniform"
min: -0.08
max: 0.08
}
bias_filler{
type: "constant"
value: 0
}
}
}
# lstm-drop
layer{
name: "lstm1-drop"
type: "Dropout"
bottom: "lstm"
top: "lstm-drop"
dropout_param{
dropout_ratio: 0.05
}
}
# connect
# ip1
layer{
name: "ip1"
type: "InnerProduct"
bottom: "lstm-drop"
top: "ip1"
param{
lr_mult: 1
decay_mult: 1
}
param{
lr_mult: 2
decay_mult: 0
}
inner_product_param{
num_output: 64
weight_filler{
type: "xavier"
}
bias_filler{
type: "constant"
value: 0
}
axis: 2
}
}
# relu
layer{
name: "relu1"
type: "ReLU"
bottom: "ip1"
top: "relu1"
relu_param{
negative_slope: 0
}
}
# ip2
layer{
name: "ip2"
type: "InnerProduct"
bottom: "relu1"
top: "ip2"
param{
lr_mult: 1
}
param{
lr_mult: 2
}
inner_product_param{
num_output: 5
weight_filler{
type: "xavier"
}
bias_filler{
type: "constant"
value: 0
}
axis: 2
}
}
# loss
layer{
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label-reshaped"
top: "loss"
softmax_param{
axis: 2
}
}
# accuracy
layer{
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label-reshaped"
top: "accuracy"
accuracy_param{
axis: 2
}
}
solver.prototxt编写
solver用于调整caffe训练等操作的超参数
solver如何编写,参考caffe.proto
附上一般写法
net: "network.proto"
test_iter: 100
test_interval: 500
type: "Adam"
base_lr: 0.01
weight_decay: 0.0005
lr_policy: "inv"
display: 100
max_iter: 10000
snapshot: 5000
snapshot_prefix: "/home/tanglizi/caffe/projects/segment/"
solver_mode: CPU
训练模型
caffe train -solver=solver.prototxt
这时可能报错:
Message type "caffe.MultiPhaseSolverParameter" has no field named "net".
请注意不是没有net,而是其他参数设置有误
intel caffe特有的报错
Caffemodel 的使用
模型训练的结果很有问题,accuracy非常低,感觉又是network写错了
于是想看看其中发生了什么
caffemodel可以通过c++或python matlab接口来使用
接下来进入intel caffe 和intel devcloud大坑
pycaffe的使用
注意:以下python代码在devcloud进行
首先我们知道caffe模型就是训练好的一个神经网络
于是必然需要caffe.Net()来读取caffemodel和net.prototxt,需要caffe.io读取数据
import caffe
from caffe import io
# 这时报错:
#Traceback (most recent call last):
# File "<stdin>", line 1, in <module>
#ImportError: cannot import name 'io'
连忙查看caffe里面有什么
dir(caffe)
# 显示 ['__doc__', '__loader__', '__name__', '__package__', '__path__', '__spec__']
# 正常显示 ['AdaDeltaSolver', 'AdaGradSolver', 'AdamSolver', 'Classifier', 'Detector', 'Layer', 'NesterovSolver',
# 'Net', 'NetSpec', 'RMSPropSolver', 'SGDSolver', 'TEST', 'TRAIN', '__builtins__', '__doc__', '__file__', '__name__',
# '__package__', '__path__', '__version__', '_caffe', 'classifier', 'detector', 'get_solver', 'init_log', 'io', 'layer_type_list',
# 'layers', 'log', 'net_spec', 'params', 'proto', 'pycaffe', 'set_device', 'set_mode_cpu', 'set_mode_gpu', 'set_random_seed', 'to_proto']
淦,根本什么都没有
由于我们的项目需要必须在服务器上进行,所以不考虑在本地机器上运行
现在有两条路:重新编译一个caffe 或用c++实现
懒得搞事情,选择c++实现
c++中使用caffemodel
注:以下过程使用intel caffe
首先我们知道caffe模型就是训练好的一个神经网络
于是必然需要caffe.Net()来读取caffemodel和net.prototxt
// predict.cpp
#include <caffe/caffe.hpp>
boost::shared_ptr< Net<float> > net(new caffe::Net<float>(net, Caffe::TEST));
- 开始手动编译
# 注意到caffe.hpp的位置,我们添加路径即可
clang++ -I <caffe path>/include -lboost_system predict.cpp -o predict
#不料报错
#/tmp/predict-fea879.o: In function 'main':
#predict.cpp:(.text+0x35b): undefined reference to 'caffe::Net<int>::Net(std::__cxx11::basic_string<char, std::char_traits<char>,
#std::allocator<char> > const&, caffe::Phase, int, std::vector<std::__cxx11::basic_string<char, std::char_traits<char>,
#std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const*,
# caffe::Net<int> const*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)'
#clang: error: linker command failed with exit code 1 (use -v to see invocation)
# 看起来找不到libcaffe,添加路径即可
clang++ -I <caffe path>/include -lboost_system predict.cpp -o predict -L <caffe path>/build/lib -lcaffe
# 不料报错 错误相同
- 放弃手动编译,放在examples/下重新编译caffe
不料报错 错误相同 - 放在tools/下(caffe.cpp的位置)重新编译caffe
直接跳过跳过编译predict.cpp
烦 放弃本地使用c++ - 在devcloud上手动编译
不料报错 错误相同
云上都编译不了我还干chua - 重新编译intel caffe
按照环境重新配置Makefile.config
编译报错
In file included from .build_release/src/caffe/proto/caffe.pb.cc:5:0:
.build_release/src/caffe/proto/caffe.pb.h:12:2: error: #error This file was generated by a newer version of protoc which is
#error This file was generated by a newer version of protoc which is
.build_release/src/caffe/proto/caffe.pb.h:13:2: error: #error incompatible with your Protocol Buffer headers. Please update
#error incompatible with your Protocol Buffer headers. Please update
.build_release/src/caffe/proto/caffe.pb.h:14:2: error: #error your headers.
#error your headers.
.build_release/src/caffe/proto/caffe.pb.h:22:35: fatal error: google/protobuf/arena.h: No such file or directory
#include <google/protobuf/arena.h>
查了一下,此处需要libprotoc 2.6.1,然而devcloud上libprotoc 3.2.0
烦死了
于是查到这个文章,在此十分感谢 @大黄老鼠 同学!!!
好了现在完全放弃caffe了!
转战chainer!
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:记intel杯比赛中各种bug与debug【其二】:intel caffe的使用和大坑 - Python技术站