背景介绍:
基于“Proposal + Classification” 的 Object Detection 的方法,R-CNN 系列(R-CNN、SPPnet、Fast R-CNN 以及 Faster R-CNN),取得了非常好的结果,但是在速度方面离实时效果还比较远在提高 mAP 的同时兼顾速度,逐渐成为 Object Detection 未来的趋势。 YOLO 虽然能够达到实时的效果,但是其 mAP 与刚面提到的 state of art 的结果有很大的差距。 YOLO 有一些缺陷:每个网格只预测一个物体,容易造成漏检;对于物体的尺度相对比较敏感,对于尺度变化较大的物体泛化能力较差。针对
YOLO 中的这些不足,该论文提出的方法 SSD 在这两方面都有所改进,同时兼顾了 mAP 和实时性的要求。在满足实时性的条件下,接近 state of art 的结果。对于输入图像大小为 300*300 在 VOC2007 test 上能够达到 58 帧每秒( Titan X 的 GPU ),72.1% 的 mAP。输入图像大小为 500 *500 , mAP 能够达到 75.1%。作者的思路就是Faster R-CNN+YOLO,利用YOLO的思路和Faster R-CNN的anchor box的思想。
关键点:
关键点1:网络结构
该论文采用 VGG16 的基础网络结构,使用前面的前 5 层,然后利用 astrous 算法将 fc6 和 fc7 层转化成两个卷积层。再格外增加了 3 个卷积层,和一个 average pool层。不同层次的 feature map 分别用于 default box 的偏移以及不同类别得分的预测(惯用思路:使用通用的结构(如前 5个conv 等)作为基础网络,然后在这个基础上增加其他的层),最后通过 nms得到最终的检测结果。
这些增加的卷积层的 feature map 的大小变化比较大,允许能够检测出不同尺度下的物体: 在低层的feature map,感受野比较小,高层的感受野比较大,在不同的feature map进行卷积,可以达到多尺度的目的。观察YOLO,后面存在两个全连接层,全连接层以后,每一个输出都会观察到整幅图像,并不是很合理。但是SSD去掉了全连接层,每一个输出只会感受到目标周围的信息,包括上下文。这样来做就增加了合理性。并且不同的feature
map,预测不同宽高比的图像,这样比YOLO增加了预测更多的比例的box。(下图横向的流程)
关键点2:多尺度feature map得到 default boxs及其 4个位置偏移和21个类别置信度
对于不同尺度feature map( 上图中 38x38x512,19x19x512, 10x10x512, 5x5x512, 3x3x512, 1x1x256) 的上的所有特征点: 以5x5x256为例 它的#defalut_boxes = 6
- 1 按照不同的 scale 和 ratio 生成,k 个 default boxes,这种结构有点类似于 Faster R-CNN 中的 Anchor。(此处k=6所以:5*5*6 = 150 boxes)
-
2 新增加的每个卷积层的 feature map 都会通过一些小的卷积核操作,得到每一个 default boxes 关于物体类别的21个置信度 ( 20个类别和1个背景)
和4偏移 (shape offsets) 。- 假设feature map 通道数为 p 卷积核大小统一为 3*3*p (此处p=256)。个人猜想作者为了使得卷积后的feature map与输入尺度保持一致必然有 padding = 1, stride = 1 :
- 假如feature map 的size 为 m*n, 通道数为 p,使用的卷积核大小为 3*3*p。每个 feature map 上的每个特征点对应 k 个 default boxes,物体的类别数为 c,那么一个feature map就需要使用 k(c+4)个这样的卷积滤波器,最后有 (m*n) *k* (c+4)个输出。
训练策略
监督学习的训练关键是人工标注的label。对于包含default box(在Faster R-CNN中叫做anchor)的网络模型(如: YOLO,Faster R-CNN, MultiBox)关键点就是如何把 标注信息(ground true box,ground true category)映射到(default box上)
-
正负样本: 给定输入图像以及每个物体的 ground truth,首先找到每个ground true box对应的default box中IOU最大的作为(与该ground true box相关的匹配)正样本。然后,在剩下的default box中找到那些与任意一个ground truth box 的 IOU 大于 0.5的default box作为(与该ground true box相关的匹配)正样本。 一个 ground truth 可能对应多个 正样本default box 而不再像MultiBox那样只取一个IOU最大的default
box。其他的作为负样本(每个default box要么是正样本box要么是负样本box)。下图的例子是:给定输入图像及 ground truth,分别在两种不同尺度(feature map 的大小为 8*8,4*4)下的匹配情况。有两个 default box 与猫匹配(8*8),一个 default box 与狗匹配(4*4)。
冲量为 0.9,权重衰减为 0.0005,batchsize 为 32。不同数据集的学习率改变策略不同。新增加的卷积网络采用 xavier 的方式进行初始化
-
在预测阶段,直接预测每个 default box 的偏移以及对于每个类别相应的得分。最后通过 nms 的方式得到最后检测结果。
Default Box 的生成:
该论文中利用不同层的 feature map 来模仿学习不同尺度下物体的检测。
- scale: 假定使用 m 个不同层的feature map 来做预测,最底层的 feature map 的 scale 值为 ,最高层的为 ,其他层通过下面公式计算得到
-
ratio: 使用不同的 ratio值 计算
default box 的宽度和高度:,。另外对于
ratio = 1 的情况,额外再指定 scale 为 也就是总共有
6 中不同的 default box。 - default box中心:上每个 default box的中心位置设置成 ,其中 表示第k个特征图的大小 。
Hard Negative Mining:
用于预测的 feature map 上的每个点都对应有 6 个不同的 default box,绝大部分的 default box 都是负样本,导致了正负样本不平衡。在训练过程中,采用了 Hard Negative Mining 的策略(根据confidence loss对所有的box进行排序,使正负例的比例保持在1:3) 来平衡正负样本的比率。这样做能提高4%左右。
Data augmentation
为了模型更加鲁棒,需要使用不同尺寸的输入和形状,作者对数据进行了如下方式的随机采样:
- 使用整张图片
- 使用IOU和目标物体为0.1, 0.3,0.5, 0.7, 0.9的patch (这些 patch 在原图的大小的 [0.1,1] 之间, 相应的宽高比在[1/2,2]之间)
- 随机采取一个patch
当 ground truth box 的 中心(center)在采样的 patch 中时,我们保留重叠部分。在这些采样步骤之后,每一个采样的 patch 被 resize 到固定的大小,并且以 0.5 的概率随机的 水平翻转(horizontally flipped)。用数据增益通过实验证明,能够将数据mAP增加8.8%。
参考:
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:【神经网络与深度学习】【计算机视觉】SSD - Python技术站