关于torch.optim的灵活使用详解(包括重写SGD,加上L1正则)

PyTorch中的torch.optim模块提供了许多常用的优化器,如SGD、Adam等。但是,有时候我们需要根据自己的需求来定制优化器,例如加上L1正则化等。本文将详细讲解如何使用torch.optim模块灵活地定制优化器,并提供两个示例说明。

重写SGD优化器

我们可以通过继承torch.optim.SGD类来重写SGD优化器,以实现自己的需求。以下是重写SGD优化器的示例代码:

import torch.optim as optim

class MySGD(optim.SGD):
    def __init__(self, params, lr=0.01, momentum=0, dampening=0, weight_decay=0, nesterov=False, l1_lambda=0):
        super(MySGD, self).__init__(params, lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov)
        self.l1_lambda = l1_lambda

    def step(self, closure=None):
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            weight_decay = group['weight_decay']
            momentum = group['momentum']
            dampening = group['dampening']
            nesterov = group['nesterov']

            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad.data
                if weight_decay != 0:
                    d_p.add_(weight_decay, p.data)
                if self.l1_lambda != 0:
                    d_p.add_(self.l1_lambda, torch.sign(p.data))
                if momentum != 0:
                    param_state = self.state[p]
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)
                        buf.mul_(momentum).add_(d_p)
                    else:
                        buf = param_state['momentum_buffer']
                        buf.mul_(momentum).add_(1 - dampening, d_p)
                    if nesterov:
                        d_p = d_p.add(momentum, buf)
                    else:
                        d_p = buf

                p.data.add_(-group['lr'], d_p)

        return loss

在这个示例中,我们继承了torch.optim.SGD类,并在__init__函数中添加了一个l1_lambda参数,用于控制L1正则化的强度。在step函数中,我们首先调用了父类的step函数,然后根据l1_lambda参数添加了L1正则化项。最后,我们返回了损失值。

加上L1正则化

我们可以通过在优化器中添加L1正则化项来实现L1正则化。以下是加上L1正则化的示例代码:

import torch.optim as optim

# 定义模型和数据
model = ...
data = ...

# 定义优化器
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=0.001)

# 训练模型
for epoch in range(num_epochs):
    for batch_idx, (inputs, targets) in enumerate(data):
        # 前向传播
        ...

        # 计算损失
        loss = ...

        # 添加L1正则化项
        l1_lambda = 0.001
        l1_reg = torch.tensor(0.)
        for name, param in model.named_parameters():
            if 'weight' in name:
                l1_reg = l1_reg + torch.norm(param, 1)
        loss = loss + l1_lambda * l1_reg

        # 反向传播
        ...

        # 更新参数
        optimizer.step()

在这个示例中,我们首先定义了模型和数据,然后定义了一个带有L1正则化项的SGD优化器。在训练模型时,我们首先计算损失,然后根据L1正则化的强度添加L1正则化项。最后,我们调用optimizer.step()函数更新参数。

总之,通过本文提供的攻略,您可以了解如何使用torch.optim模块灵活地定制优化器,并提供了两个示例说明。如果您需要根据自己的需求来定制优化器,可以继承torch.optim模块中的优化器类,并重写相应的函数。如果您需要添加L1正则化项,可以在训练模型时计算L1正则化项,并将其添加到损失函数中。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:关于torch.optim的灵活使用详解(包括重写SGD,加上L1正则) - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • 在Windows下安装配置CPU版的PyTorch的方法

    在Windows下安装配置CPU版的PyTorch的方法 在本文中,我们将介绍如何在Windows操作系统下安装和配置CPU版的PyTorch。我们将提供两个示例,一个是使用pip安装,另一个是使用Anaconda安装。 示例1:使用pip安装 以下是使用pip安装CPU版PyTorch的示例代码: 打开命令提示符或PowerShell窗口。 输入以下命令来…

    PyTorch 2023年5月16日
    00
  • PyTorch中torch.utils.data.Dataset的介绍与实战

    在PyTorch中,torch.utils.data.Dataset是一个抽象类,用于表示数据集。本文将介绍torch.utils.data.Dataset的基本用法,并提供两个示例说明。 基本用法 要使用torch.utils.data.Dataset,您需要创建一个自定义数据集类,并实现以下两个方法: len():返回数据集的大小。 getitem():…

    PyTorch 2023年5月15日
    00
  • pytorch 创建tensor的几种方法

    tensor默认是不求梯度的,对应的requires_grad是False。 1.指定数值初始化 import torch #创建一个tensor,其中shape为[2] tensor=torch.Tensor([2,3]) print(tensor)#tensor([2., 3.]) #创建一个shape为[2,3]的tensor tensor=torch…

    PyTorch 2023年4月7日
    00
  • pytorch练习

    1、使用梯度下降法拟合y = sin(x) import numpy as np import torch import torchvision import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import time import os fro…

    PyTorch 2023年4月8日
    00
  • pytorch自定义二值化网络层方式

    PyTorch 自定义二值化网络层方式 在深度学习中,二值化网络层是一种有效的技术,可以将神经网络中的浮点数权重和激活值转换为二进制数,从而减少计算量和存储空间。在PyTorch中,您可以自定义二值化网络层,以便在神经网络中使用。本文将提供详细的攻略,以帮助您在PyTorch中自定义二值化网络层。 步骤一:导入必要的库 在开始自定义二值化网络层之前,您需要导…

    PyTorch 2023年5月16日
    00
  • Pytorch实现LeNet

     实现代码如下: import torch.functional as F class LeNet(torch.nn.Module): def __init__(self): super(LeNet, self).__init__() # 1 input image channel (black & white), 6 output channels…

    PyTorch 2023年4月8日
    00
  • 在jupyter Notebook中使用PyTorch中的预训练模型ResNet进行图像分类

    预训练模型是在像ImageNet这样的大型基准数据集上训练得到的神经网络模型。 现在通过Pytorch的torchvision.models 模块中现有模型如 ResNet,用一张图片去预测其类别。 1. 下载资源 这里随意从网上下载一张狗的图片。 类别标签IMAGENET1000 从 https://blog.csdn.net/weixin_3430401…

    PyTorch 2023年4月7日
    00
  • Windows下实现pytorch环境搭建

    Windows下实现PyTorch环境搭建 在 Windows 系统下,我们可以通过 Anaconda 或 pip 来安装 PyTorch 环境。本文将详细讲解 Windows 下实现 PyTorch 环境搭建的完整攻略,并提供两个示例说明。 1. 使用 Anaconda 安装 PyTorch 在 Windows 系统下,我们可以使用 Anaconda 来安…

    PyTorch 2023年5月16日
    00
合作推广
合作推广
分享本页
返回顶部