下面是关于“dpn网络的pytorch实现方式”的完整攻略:
DPN网络简介
DPN(Dual Path Network)网络是一种深度卷积神经网络。与传统的卷积神经网络不同,DPN网络引入了双向路径机制,以提高网络的性能和稳定性。其核心思想是将特征图分成两个路径,分别进行特征提取和特征融合。
DPN网络的pytorch实现方式
下面是DPN网络的pytorch实现方式:
导入需要的模块
首先需要导入PyTorch、torchvision以及numpy等模块:
import torch
import torch.nn as nn
import torchvision
import numpy as np
定义DPN网络
定义DPN网络的Python类,代码如下:
class BasicBlock(nn.Module):
def __init__(self,in_planes,planes,stride=1):
super(BasicBlock,self).__init__()
self.conv1 = nn.Conv2d(in_planes,planes,kernel_size=3,padding=1,bias=False,stride=stride)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes,planes,kernel_size=3,padding=1,bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.relu=nn.ReLU(inplace=True)
def forward(self,x):
residual = x
out = self.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += residual
out = self.relu(out)
return out
class DPN(nn.Module):
def __init__(self,block, num_classes=10):
super(DPN,self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3,64,kernel_size=3,padding=1,bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block,64,1)
self.layer2 = self._make_layer(block,128,2)
self.layer3 = self._make_layer(block,256,2)
self.layer4 = self._make_layer(block,512,2)
self.linear = nn.Linear(512, num_classes)
def _make_layer(self,block,planes,num_blocks,stride=1):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes,planes,stride))
self.in_planes = planes
return nn.Sequential(*layers)
def forward(self, x):
out = self.bn1(self.conv1(x))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = nn.functional.avg_pool2d(out,4)
out = out.view(out.size(0),-1)
out = self.linear(out)
return out
上述代码中,BasicBlock是DPN网络中的基本块,DPN是整个网络。其中,_make_layer()方法用于创建每一个层,forward()方法用于网络的前向传播。
定义训练函数
定义用于训练DPN网络的函数:
def train(net, device, train_loader, optimizer, criterion, epoch):
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('Train Epoch: {} | Loss: {:.4f} | Acc: {:.4f}'.format(
epoch, train_loss/(batch_idx+1), 100.*correct/total))
定义测试函数
定义用于测试DPN网络的函数:
def test(net, device, test_loader):
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('Test set: Average loss: {:.4f}, Accuracy: {:.4f}'.format(
test_loss/(batch_idx+1), 100.*correct/total))
载入数据集
载入CIFAR10数据集
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
训练和测试模型
最后,我们就可以调用上述函数对DPN网络进行训练和测试了:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dpn = DPN(BasicBlock, num_classes=10)
dpn = dpn.to(device)
optimizer = torch.optim.SGD(dpn.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
criterion = nn.CrossEntropyLoss()
for epoch in range(200):
train(dpn, device, trainloader, optimizer, criterion, epoch)
test(dpn, device, testloader)
if (epoch + 1) % 50 == 0:
for param_group in optimizer.param_groups:
param_group['lr'] /= 2
这个例子中,我们使用了CIFAR10数据集进行训练,训练过程中分别使用了SGD优化器和交叉熵损失函数。我们训练了200个epoch,其中每50个epoch将学习率缩小一半。
至此,关于“dpn网络的pytorch实现方式”的攻略就完成了。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:dpn网络的pytorch实现方式 - Python技术站