Python Pandas中两个数据框架的交集

Pandas中,有几种方法可以计算两个DataFrame对象的交集。

方法一:使用merge()函数

merge()函数是将两个DataFrame对象结合在一起的函数,它可以根据指定的列将两个DataFrame对象合并在一起。

示例:

import pandas as pd

# 创建df1和df2 DataFrame
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 
                    'B': ['B0', 'B1', 'B2', 'B3'], 
                    'C': ['C0', 'C1', 'C2', 'C3'], 
                    'D': ['D0', 'D1', 'D2', 'D3']})
df2 = pd.DataFrame({'A': ['A2', 'A3', 'A4', 'A5'],
                    'B': ['B2', 'B3', 'B4', 'B5'],
                    'C': ['C2', 'C3', 'C4', 'C5'],
                    'E': ['E2', 'E3', 'E4', 'E5']})

# 使用merge()函数合并,指定on参数代表“以什么作为索引”,默认为None,即使用公共列名作为连接键
df = pd.merge(df1, df2, on=['A', 'B', 'C'], how='inner')

print(df)

上述代码中,将df1和df2的交集返回至新的DataFrame对象df中,使用on参数指定连接键,然后使用how参数指定inner来计算交集。在返回的DataFrame中,保留了所有在df1和df2中的行,只保留在df1和df2中具有相同的值的行。

输出:

    A   B   C   D   E
0  A2  B2  C2  D2  E2
1  A3  B3  C3  D3  E3

方法二:使用merge()函数和Index

也可以使用merge()函数和Index来计算DataFrame对象之间的交集。使用Index可以让我们更灵活地控制连接键。

示例:

import pandas as pd

# 创建df1和df2 DataFrame
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 
                    'B': ['B0', 'B1', 'B2', 'B3'], 
                    'C': ['C0', 'C1', 'C2', 'C3'], 
                    'D': ['D0', 'D1', 'D2', 'D3']})
df2 = pd.DataFrame({'A': ['A2', 'A3', 'A4', 'A5'],
                    'B': ['B2', 'B3', 'B4', 'B5'],
                    'C': ['C2', 'C3', 'C4', 'C5'],
                    'E': ['E2', 'E3', 'E4', 'E5']})

# 设置连接键,用于将DataFrame对象合并在一起
merged = pd.merge(df1, df2, left_index=True, right_index=True, how='inner')

print(merged)

上述代码中,我们将df1和df2的索引作为连接键(left_index和right_index),将其合并在一起,之后使用how='inner'来计算它们之间的交集。

输出:

    A_x B_x C_x D_x A_y B_y C_y D_y
2    A2  B2  C2  D2  A2  B2  C2  D2
3    A3  B3  C3  D3  A3  B3  C3  D3

注:如果想要在输出中只保留一个列名,可以在merge()函数中使用suffixes参数。

以上就是Pandas中计算DataFrame对象交集的完整攻略。使用合适的方法和连接键,可以在少数代码行中完成相对较复杂的操作。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python Pandas中两个数据框架的交集 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • Python Matplotlib数据可视化模块使用详解

    Python Matplotlib数据可视化模块使用详解 简介 Matplotlib 是一个用于创建静态,动态和交互式可视化的流行的 Python 数据可视化库。它可以绘制二维和三维图,条形图,饼图,直方图等。 安装 要使用 Matplotlib 库,你需要先安装它。可以使用以下命令在命令行中安装 Matplotlib: pip install matplo…

    python 2023年5月14日
    00
  • Pandas数据处理加速技巧汇总

    Pandas数据处理加速技巧汇总 在处理大量数据时,很容易因为算法效率低下而导致程序运行缓慢。本篇文章将介绍一些针对Pandas数据处理的加速技巧,帮助你更快地完成数据处理任务。 1. 使用eval() eval() 函数是 Pandas 用于高效解析 Pandas 表达式的函数。例如,要在 Pandas DataFrame 中选择 x > 1的行,可…

    python 2023年5月14日
    00
  • Windows7下Python3.4使用MySQL数据库

    下面是在Windows 7下Python 3.4使用MySQL数据库的完整攻略: 安装MySQL 首先要安装MySQL,下载地址:https://dev.mysql.com/downloads/mysql/ 建议选择“MySQL Installer for Windows”,这是MySQL官方提供的安装程序,包含了MySQL Server、MySQL Wor…

    python 2023年6月14日
    00
  • python xlsxwriter模块的使用

    我为您介绍一下python xlsxwriter模块的使用攻略。 什么是xlsxwriter模块? xlsxwriter是Python的一个模块,可以用来将数据写入Excel文件中。实际上,它可以用来创建任意大小的工作表,并提供许多excel风格的格式化选项。 安装xlsxwriter模块 我们可以使用pip命令在Python环境中安装xlsxwriter模…

    python 2023年5月14日
    00
  • 如何在Python中使用pandas做vLookup

    在Python中使用pandas进行vLookup,可以使用merge函数来完成。具体步骤如下: 读入数据表格:使用pandas库中的read_csv函数读取需要进行vLookup的两个数据表格,并将它们分别存储在两个DataFrame对象中。 import pandas as pd df1 = pd.read_csv(‘table1.csv’) df2 =…

    python-answer 2023年3月27日
    00
  • 对Pandas DataFrame缺失值的查找与填充示例讲解

    下面我为你介绍一篇详细讲解“对PandasDataFrame缺失值的查找与填充示例讲解”的攻略。本攻略将从以下几个方面进行讲解: 缺失值的定义及常见原因; 查找缺失值的方法; 填充缺失值的方法。 1. 缺失值的定义及常见原因 缺失值是指缺少特定数据的现象。在数据处理中,由于数据输入、处理出错或某些数据不可用等原因,会出现缺失值。常见的原因包括: 数据采集或传…

    python 2023年5月14日
    00
  • 详解pandas中iloc, loc和ix的区别和联系

    详解pandas中iloc、loc和ix的区别和联系 在pandas中,iloc、loc和ix都是数据筛选或访问数据的常用方法,但它们有着不同的用法和功能。在本篇攻略中,我们将详细讲解这三个方法的区别和联系。 iloc iloc是根据行索引和列索引来选取数据的方法,它可以接受整数和切片对象作为行或列的索引。 使用整数索引 选取单行或单列时,iloc需要把行或…

    python 2023年5月14日
    00
  • 如何选择Pandas数据框架的单列

    选择 Pandas 数据框架的单列需要考虑以下因素: 列名:选择具有代表性的列名,需要明确地表达自己的数据类型和内容,方便下一步的数据分析。 数据类型:考虑用哪种数据类型来储存数据,例如是否是数值型、字符型或日期型等,以及储存时是否需要进行缩减或更改数据类型。 数据格式:在进行数据分析的过程中,需要选择最合适的数据格式,例如字符串、数值或时间序列,以确保分析…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部