【牛客小白月赛70】A-F题解【小d和超级泡泡堂】【小d和孤独的区间】【小d的博弈】【小d和送外卖】

yizhihongxing

比赛传送门:https://ac.nowcoder.com/acm/contest/53366

难度适中。

? 作者:Eriktse
? 简介:19岁,211计算机在读,现役ACM银牌选手?力争以通俗易懂的方式讲解算法!❤️欢迎关注我,一起交流C++/Python算法。(优质好文持续更新中……)?
? 阅读原文获得更好阅读体验:https://www.eriktse.com/algorithm/1109.html

A - 小d和答案修改

Tag:签到

略。

Code:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e5 + 9;

char s[N];

signed main()
{
    cin >> s + 1;
    
    for(int i = 1; s[i]; ++ i)
    {
        if('a' <= s[i] && s[i] <= 'z')printf("%c", s[i] - 'a' + 'A');
        else printf("%c", s[i] - 'A' + 'a');
    }
    
    return 0;
}

B - 小d和图片压缩

Tag:签到

略。

Code:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e3 + 9;

int a[N][N];

signed main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n, m;cin >> n >> m;
    for(int i = 1;i <= n; ++ i)
        for(int j = 1;j <= m; ++ j)
            cin >> a[i][j];
    
    for(int i = 1;i <= n; i += 2)
    {
        for(int j = 1;j <= m;j += 2)
        {
            int sum = a[i][j] + a[i + 1][j] + a[i][j + 1] + a[i + 1][j + 1];
            cout << sum / 4 << ' ';
        }
        cout << '\n';
    }
    
    return 0;
}

C - 小d和超级泡泡堂

Tag:dfs,联通块

给定一个大小为n x m的地图,求起点@所在的联通块的大小。

用深度优先搜索dfs扫一遍即可,复杂度O(nm),当然你想用bfs也行。

注意不要越界。

Code:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e3 + 9;
char mp[N][N];

bitset<N> vis[N];

int dx[] = {1, -1, 0, 0};
int dy[] = {0, 0, 1, -1};
int n, m;

int dfs(int x, int y)
{
    int res = mp[x][y] == '!';
    for(int i = 0;i < 4; ++ i)
    {
        int nx = x + dx[i], ny = y + dy[i];
        if(nx < 1 || nx > n || ny < 1 || ny > m || vis[nx][ny] || mp[nx][ny] == '#')continue;
        vis[nx][ny] = true;
        res += dfs(nx, ny);
    }
    return res;
}

signed main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    cin >> n >> m;
    for(int i = 1;i <= n; ++ i)cin >> mp[i] + 1;
    int sx, sy;
    for(int i = 1;i <= n; ++ i)
        for(int j = 1;j <= m; ++ j)if(mp[i][j] == '@')sx = i, sy = j;
    
    int ans = dfs(sx, sy);
    cout << ans << '\n';
    return 0;
}

D - 小d和孤独的区间

Tag:思维,dp,组合计数

给定一个长度为0的01串,问有多少个子串是仅包含一个1的。

我们可以求两个数组,l[i]表示从i点开始,往左有多少个连续的0,r[i]表示从i点开始,往右有多少连续的0。

然后我们枚举每一个点,如果发现a[i] == 1,说明这个点i可以被一些区间包含到且仅有这一个1,那么是哪些区间呢?我们假设这个区间为[s, e],那么一定有s <= i && i <= e,且[s, i - 1]中只包含0,[i + 1, e]中只包含0。

那么我们可以得到左端点s的取值有l[i - 1] + 1种,右端点e的取值有r[i + 1] + 1种。

Code:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e6 + 9;
int a[N], l[N], r[N];


signed main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int n;cin >> n;
    for(int i = 1;i <= n; ++ i)cin >> a[i];
    for(int i = 1;i <= n; ++ i)
    {
        if(a[i] == 1)continue;
        if(i > 1 && a[i - 1] == 0)l[i] = l[i - 1] + 1;
        else l[i] = 1;
    }
    for(int i = n;i >= 1; -- i)
    {
        if(a[i] == 1)continue;
        if(i < n && a[i + 1] == 0)r[i] = r[i + 1] + 1;
        else r[i] = 1;
    }
    int ans = 0;
    for(int i = 1;i <= n; ++ i)
    {
        if(a[i] == 1)ans += (l[i - 1] + 1) * (r[i + 1] + 1);
    }
    cout << ans << '\n';
    return 0;
}

E - 小d的博弈

Tag:博弈,思维

给定一个大小为n x m的矩形,Alice和Bob轮流对其进行操作,每次操作可以横着或竖着在把矩形切一刀分成两个长宽都为整数的矩形,然后留下面积较小的那个,两个矩形面积相等是不被允许的,也就是说不能从中间切。

当无法继续操作的时候就输了。

我们分析一下容易发现几种必败的局面,(1, 1), (1, 2), (2, 1), (2, 2)无法操作,直接败。

通过分析一些特殊的矩形,比如n=m的情况,我们可以发现n=m的时候也是必败的,因为下一个人一定可以模仿当前操作者的操作,从而每次都使得回到自己手上的都是一个正方形,那么最终必然会到(1, 1)或(2, 2)的必败局面。

所以我们思考,当有办法使得对方进入一个n=m的局面,此时我们就是必胜的。

所以我们的博弈状态为:

W必胜态: 当n > 2m || m > 2n时,我们可以通过切分使得对手得到一个正方形,所以此时是必胜的。

其他情况,此时我肯定不能把小的再切小,因为每次切割必然使得nm比原来的一半还小,就会使得对手进入W的必胜态。所以我一定是切割n, m中较大的那个,并且要尽可能大的切割。

Code:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e6 + 9;

void solve()
{
    int n, m;cin >> n >> m;
    int ans = 1;
    while(1)
    {
        if(n > 2 * m || m > 2 * n)break;
        
        if(n > m)n = (n - 1) / 2;
        else m = (m - 1) / 2;
        ans ^= 1;
    }
    cout << (ans ? "Alice" : "Bob") << '\n';
}

signed main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int _;cin >> _;
    while(_ --)solve();
    return 0;
}

F - 小d和送外卖

Tag:树形dp,背包,图论

我们将需要送外卖的点标记为need

定义dp状态:

dp[x][i]表示在以节点x为根的子树上删除i个点后可以减少的最大路程。

s[x]表示在以节点x为根的子树中的需求量(标记为need的点的个数)。

考虑一下转移方程。

在转移刚开始的时候,dp[x]是不完整的,它仅包含x这一个点的信息,设x的儿子分别为y1,y2,y3,在将y1转移给x之后,dp[x]表示的范围就是x点y1子树,以此类推,将y2, y3一个个合并,最后dp[x]表示的信息就是以x为根的子树的信息。

思考一下如何更新dp[x][k],我们可以将k分解成i + (k - i),然后有dp[x][k] = max(dp[x][i], dp[y][k - i])

我们更新dp[x]需要用到dp[x]本身的信息,所以我们需要开一个临时的数组f[]来表示dp[x]更新完再将f[]复制给dp[x]

首先,如果s[y] == 0,说明y子树对答案完全没有影响,可以直接跳过。

如果k - i == s[y],说明我们把y子树的所有需求点都删了,那么x -> y这条边可以删除,所以对答案贡献为2(表示最终路程可以减少2),其余情况贡献都为0。

更新完dp[x]后还要更新一下s[x],直接加上s[y]即可。

同时顺便计算一下不删除边的情况下的总路程tot,当s[y]不为0,就必须往下走了。

Code:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e5 + 9;
int dp[N][60], s[N];//dp[i][j]表示在i为根的子树中删除j个点的最大贡献
//s[i]表示以i为根的子树中的需求量
vector<int> g[N];
bitset<N> need;
int tot, n, m;;
void dfs(int x, int p)
{
    s[x] = need[x];
    for(auto &y : g[x])
    {
        if(y == p)continue;
        dfs(y, x);
        if(s[y] == 0)continue;
        
        static int f[60];
        memset(f, 0, sizeof f);
        for(int k = 0;k <= min(m, s[x] + s[y]); ++ k)
        {
            //x树中取i个,注意此时x树并不完整
            //在y中取k - i个,此时y树为完整的
            for(int i = 0;i <= min(m, s[x]); ++ i)
            {
                if(k - i <= s[y] && k - i >= 0)
                    f[k] = max(f[k], dp[x][i] + dp[y][k - i] + (k - i == s[y] ? 2 : 0));
            }
        }
        s[x] += s[y];
        tot += 2;//此时已经保证s[y] != 0,注意看上面的continue
        for(int i = 0;i <= min(m, s[x] + s[y]); ++ i)dp[x][i] = f[i];
    }
}

signed main()
{
    ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    cin >> n >> m;
    for(int i = 1;i < n; ++ i)
    {
        int x, y;cin >> x >> y;
        g[x].push_back(y), g[y].push_back(x);
    }
    
    int k;cin >> k;
    for(int i = 1;i <= k; ++ i)
    {
        int x;cin >> x;
        need[x] = true;
    }
    
    dfs(1, -1);
    cout << tot - dp[1][m] << '\n';
    return 0;
}

? 本文由eriktse原创,创作不易,如果对您有帮助,欢迎小伙伴们点赞?、收藏⭐、留言?

原文链接:https://www.cnblogs.com/eriktse/p/17298330.html

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:【牛客小白月赛70】A-F题解【小d和超级泡泡堂】【小d和孤独的区间】【小d的博弈】【小d和送外卖】 - Python技术站

(0)
上一篇 2023年4月17日
下一篇 2023年4月17日

相关文章

  • Java深入了解数据结构之优先级队列(堆)

    Java深入了解数据结构之优先级队列(堆) 本文将会详细介绍Java中的优先级队列,即堆数据结构的实现过程和使用方法。 什么是优先级队列? 在介绍优先级队列之前,我们需要了解先进先出队列(FIFO Queue)和后进先出队列(LIFO Queue,或称栈)的概念。FIFO Queue按照元素的插入顺序依次出队;而LIFO Queue则按照元素的插入顺序反向出…

    数据结构 2023年5月17日
    00
  • C语言数据结构实现银行模拟

    C语言数据结构实现银行模拟攻略 背景介绍 银行模拟是计算机学科中一个重要的数据结构实践练习项目。它涉及到队列(Queue)等数据结构的应用,也是计算机基础课程的一个重要组成部分。 代码实现 1. 队列的实现 首先,我们需要实现一个队列(Queue)结构体,包含 QueueSize、Front、Rear 三个成员变量: struct Queue { int Q…

    数据结构 2023年5月17日
    00
  • python 算法 排序实现快速排序

    下面是详细讲解“Python算法排序实现快速排序”的完整攻略,包括算法原理、Python实现和两个示例说明。 算法原理 快速排序是一种基于分治思想的排序算法,其基本思想是通过一趟排序将待排序序列分割成独立的两部分,其中一部分的所有元素都比另一部分的所有元素小,然后再此方法对这两部分分别进行快速排序,直到整个列有序。具体步骤如下: 从数列中出一个元素,称为“基…

    python 2023年5月14日
    00
  • Python实现二分法算法实例

    下面是关于“Python实现二分法算法实例”的完整攻略。 1. 二分法算法概述 二分法算法是一种高效的查找算法,它的基本思想是将数据集合分成两分,然后递归地在其中一部分查找目元素。在Python中,我们可以使用二分法算法来查找有序数组中的元素。 2. 二分法算法实现 下面使用Python实现二分法算的代码: def binary_search(arr, ta…

    python 2023年5月13日
    00
  • 深入解析MySQL索引数据结构

    深入解析MySQL索引数据结构 MySQL索引是优化查询效率的重要一环,本文将深入解析MySQL索引数据结构,帮助读者理解MySQL索引原理,并通过两个示例说明不同类型的索引在实际应用中的效果。 索引数据结构 MySQL支持两种类型的索引数据结构:B-Tree索引和Hash索引。 B-Tree索引 B-Tree索引是MySQL常用的索引类型,用于优化WHER…

    数据结构 2023年5月17日
    00
  • Python计算开方、立方、圆周率,精确到小数点后任意位的方法

    Python计算开方、立方、圆周率,精确到小数点后任意位的方法 在Python中,计算开方、立方、圆周率以及精确到小数点后任意位的方法多种,下面将分别进行介绍。 1. 计算开方 Python中计算开方可以使用math库中的sqrt函数,也使用幂运算符(**)。 使用math库 import math x = 16 y = math.sqrt(x) print…

    python 2023年5月14日
    00
  • C++数据结构之双向链表

    C++数据结构之双向链表完整攻略 1. 什么是双向链表 双向链表是一种特殊的链表结构,每个节点拥有两个指针域,分别指向前继和后继节点。 双向链表不需要像单向链表那样从头到尾遍历整个链表,可以通过前后指针直接访问前后节点,提高了查找、删除、插入等操作的效率。 双向链表有一些常用的操作,如插入节点、删除节点、查找节点等。 2. 双向链表的实现 2.1 节点定义 …

    数据结构 2023年5月17日
    00
  • Python实现的NN神经网络算法完整示例

    Python实现的NN神经网络算法完整示例 神经网络是一种常用的机器学习算法,可以用于分类、回归和聚类等任务。在Python中,可以使用numpy和tensorflow等库实现神经网络算法。本文将详细讲解Python实现神经网络算法的整个攻略,包括算法原理、Python实现过程和示例。 算法原理 神经网络是一种由多个神经元组成的网络结构,每个神经元接收多个输…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部