如何在Python中重新取样时间序列数据

在 Python 中,重采样时间序列数据的操作可以通过 Pandas 库中的 resample() 方法来实现。以下是具体操作步骤:

首先,我们需要导入 Pandas 库,并读取时间序列数据。假设我们有一个时间序列数据集 df,包含一列日期时间数据(datetime)和一列数值数据(value),可以用如下代码读取数据:

import pandas as pd
df = pd.read_csv('data.csv', parse_dates=['datetime'], index_col='datetime')

接下来,我们可以使用 resample() 方法重新采样子集时间跨度(period)的数据。例如,我们想要将数据降采样到每个小时的平均值,可以使用如下代码:

hourly = df.resample('1H').mean()

上述方法中,'1H'表示时间步长为一小时,mean()用于计算每个小时内各个样本数据的平均值。resample() 方法返回的对象 hourly 也是 Pandas 的数据框(DataFrame)格式。

反之,如果我们想要重新采样升采样的数据,比如将每个小时的平均数据提高到每隔 30 分钟就需要使用插值(interpolation)生成缺失数据。可以使用如下代码:

frequent = hourly.resample('30T').interpolate()

上述方法中,'30T'表示时间步长为 30 分钟,interpolate() 方法用于基于默认的线性插值来填充缺失数据。

最后,我们就可以将重新采样的数据写入到新的文件中,如下所示:

frequent.to_csv('frequent_data.csv')

这样,我们就成功的重新采样了时间序列数据,并将重新采样后的数据保存在了新的文件中。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:如何在Python中重新取样时间序列数据 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • Window版下在Jupyter中编写TensorFlow的环境搭建

    让我为你详细讲解在Window版下在Jupyter中编写TensorFlow的环境搭建的完整攻略吧。 前置要求 在进行TensorFlow的环境搭建前,需要满足以下前置要求: 安装Python环境 安装Anaconda 环境搭建过程 首先,在Windows中打开Anaconda Prompt,在命令行中输入以下命令创建虚拟环境: conda create -…

    python 2023年5月14日
    00
  • 在Pandas中为数据框架添加列名

    在Pandas中,我们可以使用 DataFrame 类来创建数据框架,并可以为数据框架添加列名。以下是在Pandas中为数据框架添加列名的完整攻略,包括实例说明: 1. 创建数据框架 首先,我们需要创建一个数据框架,可以使用 pandas.DataFrame() 函数: import pandas as pd data = {‘name’: [‘Alice’…

    python-answer 2023年3月27日
    00
  • matlab、python中矩阵的互相导入导出方式

    在Matlab和Python中,可以非常方便地完成矩阵数据的互相导入和导出。以下是两个示例用于说明这些操作的详细步骤: 导出Matlab矩阵到Python Matlab中使用save函数将矩阵数据保存到.mat格式文件中,Python使用scipy库中的loadmat函数可以加载这些文件。 例如,我们要将一个名为“data”的Matlab矩阵导出到Pytho…

    python 2023年6月14日
    00
  • Pandas数据类型之category的用法

    下面是对“Pandas数据类型之category的用法”的详细讲解攻略。 什么是category类型 Pandas中的category数据类型,称为分类数据类型,是针对具有固定数量的不同值的数据进行有效管理的数据类型。在这种数据类型中,重复的数据仅保存一次。 方便快捷地对这种数据进行分组和排序。 在数据集中,用户的性别、部门、优先级、状态、等级和类型等属性通…

    python 2023年5月14日
    00
  • 在Python Pandas中比较时间戳

    在Python Pandas中,可以使用许多方法来比较时间戳。下面介绍其中的一些方法。 1. 比较大小 使用“>”、“<”、“>=”、“<=”、“==”、“!=”等运算符可以比较时间戳的大小。示例代码如下: import pandas as pd d1 = pd.Timestamp(‘2021-01-01 00:00:00’) d2 …

    python-answer 2023年3月27日
    00
  • Pandas库中iloc[ ]函数使用详解

    Pandas库中iloc[ ]函数使用详解 Pandas是一个开源Python数据分析库,其中的iloc[ ]函数可以对Pandas数据集进行访问和数据选取操作。本文将详细讲解Pandas库中iloc[ ]函数的用法。 1. iloc[ ]函数的基本用法 iloc[ ]是Pandas库中专门用于根据位置进行选取的函数。它的基本语法如下: data.iloc[…

    python 2023年5月14日
    00
  • 用Pandas读取rpt文件

    当我们需要处理大量业务数据时,Pandas是Python的一个非常优秀的数据分析库。在使用Pandas进行数据分析时,rpt文件也是一种常见的数据格式。 读取rpt文件,需要用到Pandas中的read_excel函数,其参数包括文件路径,表格名称等。具体的步骤如下: 1.导入Pandas库,引入read_excel函数 import pandas as p…

    python-answer 2023年3月27日
    00
  • Pandas GroupBy 计算每个组合的出现次数

    下面是关于 Pandas 的 GroupBy 计算每个组合的出现次数的完整攻略及实例说明。 什么是Pandas的GroupBy? GroupBy是 Pandas 数据分析库的一种强大工具,它用于在 Pandas 数据框中根据用户指定的关键字将数据拆分成组,并对每组数据执行某些操作。 GroupBy的主要用途有哪些? GroupBy的主要用途包括:- 数据聚合…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部